PR TR TR TR TR SR O Redaktoren
morst NOTORIQUS
INFARMOGUS

PYRAT

Funnelweb version 4.40

ey

Swedlow TI BITS 11-13

td ity [

Battle Star - spel XB
Debugging XB

Silentnite

Graphicl - assembler
Rumors - V9978
Justifying Decimal
Beginner Assembler - 6

Svenska Basic

Fast Extended Basic!

Tigercub Tips #45

From Basic to Assembly
DISPLAY AT i Basic

Programbiten 79-2

ISSN 0281-1146

REDAKTOREN

INIT av tangentbord i PB 91-2.14 3:e
raden efter label INIT ska &dndras:
CLR RO
MOVB RO,@>8374
MOVB RO,@>837A

TI*MES, TI99/4A User's Group (UK},
har fatt ny kontakt fér medlemsskap
(15 GBP/&r): Philip Trotter, 80
Martonburn Rd., Grovehill, Middels-
borough, TS4 2TH, Storbritannien.

I PB har vi publicerat program och
artiklar fran BUG NEWS utgiven av
BREA 99'ers. Tidning pd 10 sidor
ges ut en gang/manaden (15 USD/&r
inom USA). Artiklar har kommit via:
Frank Aylstock, 4336 Eureka Avenue,
YORBA LINDA, CA 92686, USA.

Junction Softworks har upphért med
all verksamhet for TI-99/4A, PB
91-4.28 galler ej.

Asgard har upphért med sitt 80-
kolumnskort EGI, PB 91-4.23 gdller
ej. Man har slutat att ta emot nya
prenumeranter pa Asgard Reflections.
Asgard fortsédtter att sdlja progranm.

Texaments, 53 Center Street,
Patchogue, NY 11772, USA sdljer:
Myarc HFDC USD 200+porto USD 45
Myarc dsk-contr USD 140+porto USD 20
Myarc Geneve USD 420+porto USD100O
Myarc RS232/PI0O USD 100+porto USD 20

Du kan f& en kopia av FW 4.40 genom
att sdnda skivor och frankerat
svarskuvert till redaktéren. 40-
kolumnsversionen ryms pa 3 st SS/SD
medan extrafiler foér 80-kolumn ryms
pa 2 st extra skivor S$S/SD.

Jan Alexandersson, Springarvdgen 5,
3 tr, S-142 61 TRANGSUND(08-7710569)

FW 4.40 (continued from page 3)

Oct/30/91 ... Back to programming
with renewed vision !! Read/Write
failure indicators added for DR file
copies. DSKU notes handling revised
and corrected. FWDOC files /DR40,1,
/DR80,2, /PSRV updated. Dual 80/40
Editor, files ED80 & ED81, now
windows correctly in 40 col mode.
Cause of error recovery bug in DR
narrowed to Myarc 80-Tk FDCs. &

Redaktdr: Jan Alexandersson
Medlemsregister: Claes Schibler
Tryckning av tidning: Ake Olsson
Programbankir: Boérje H4ll

Féreningens adress:
Féreningen Programbiten
c¢/o Schibler
Wahlbergsgatan 9 NB
S-121 46 JOHANNESHOV
Sverige

Postgiro 19 83 00-6
Medlemsavgiften for 1991 &r 120:-

Datainspektionens licensnummer:
82100488

Annonser, insatta av enskild medlem
(ej foretag), som gdller foérsdljning
av moduler eller andra tillbehér i
enstaka exemplar &r gratis.

Ovriga annonser kostar 200 kr for
hel sida. Fér lésblad (kopieras av
annonsdren) som skickas med tid-
ningen gdller 200 kr per blad.
Féreningen forbehaller sig rétten
att avbdja annonser som ej hor ihop
med féreningens verksamhet eller ej
pd ett seridst sdtt gdller forsdlj-
ning av originalexemplar av program.

Fér kommersiellt bruk gdller detta:
Ma&ngfaldigande av innehdllet i denna
skrift, helt eller delvis &r enligt
lag om upphovsrédtt av den 30 decem-
ber 1960 férbjudet utan medgivande
av Fdéreningen Programbiten. Férbudet
gialler varje form av mangfaldigande
genom tryckning, duplicering, sten-
cilering, bandinspelning, diskett-
inspelning etc.

Féreningens tillbehérsférsdljining:
Féljande tillbehdér finns att kdpa
genom att motsvarande belopp insétts
pad postgiro 19 83 00-6 (porto ingéar)

Anvandartips med Mini Memory 20:-
Nittinian T-tréja 40:-
99er mag. 12/82, 1-5,7-9/83(st) 40:-
Nittinian argang 1983 50:-
Programbiten 84-89 (per drgang) 50:-

1990 80:-
TI-Forth manual 100:-

Hel diskett ur programbanken(st)30:

Enstaka program 5:- st + startkost-
nad 15 kr per skiva eller kassett
(1 program=20kr, 3 program=30 kr).
Se listor i PB89-3 och PB90-4.

2 PROGRAMBITEN 91-6

FUNNELWEB VERSION 4.40

by Tony McGovern, Australia

New Files (-READ-ME)

L L

The FUNNELWEB package contains a
number of files (50 files in all).

The following is new compared to FW
4.31.

ML - a sample Multi-List file

FWDOC/SCLL - details of Low-Loader,
Script-Loader, Assembly MAKE, and
User and Multi-List files

ML80 - the 80-column Multi List
program

FWDOC/PSRV - details of useful pro-
gram services, pointers, and data
available in the FW interface block.

Update Notes (-READ-ME)

N e e At B e e o ot e P e e e e pe e e e Re me

Vn 4.40 is a further refinement and
extension of the FUNNELWEB systen,
and retains full external compati-
bility with prior versions. Signi-
ficant changes, apart from minor
bug-fixes, from Vn 4.31 are

(i) A flashing cursor with auto
accelerating repeat has replaced the
static sprite underline cursor, with
timing delays compensated for pro-
cessor speed. GROM address setting
now should support Module Library
devices. More externally accessible
program services and new documenta-
tion are provided.

(ii) DM-1000 files MG/MH and Disk-

Patch file DP were dropped after Vn
4.30. They still can be used with

¥n 4.40. Use of the LOAD only re-

load path from DM-1000 is no longer
advisable.

(iii) Script-Load and the Assembler
now support a multiple file MAKE
function.

(iv) Error indication for Duplicate
DEFs and Unresolved REFs has been

improved in the object loaders, and
Script-Load now has a full error

handler with extended Unresolved REF
display.

(v} The 80 column Editor now sup-
ports a 40 column Edit mode. Pro-
gram file checking has been dropped
for extra speed from the Editor SDs
as superfluous now DR is here, and
the original TI RE bug is fixed.
This has made room for --

(vi) Double-View in the 80-col
Editor which allows page scrolled
access to parts of one or more files
from SD without further disk activi-

ty.

(vii) DiskReview now has some
support for DSKU file comments, and
file read in for View is faster.

(viii) In UL files the <esc) path
has been modified to suit better the
revised <esc> handling in the main
program. It would be a good idea to
transfer your existing lists on to
the new template by Fetching the old
file, Making Reserve of it, Fetching
the new UL, eXchanging data, and
then Saving back under the original
filename.

(ix) A new class of Multi User List
files has been introduced.

{x) Various other auxiliary system
programs have been revised, in
particular CF/CG, LDFW, CT8K/0, LL,
SL, AS/AT, and ED/EE. Replace all
files to be on the safe side.

Bugs and Mods (FWDOC/REPT)

P L L L

May/30/91 ...
4.40.

First issue of Vn

Jul/26/91 ... Fixes for LOAD's XB
user list program loading, and for
ED80 <P>Dir function from SD. FILENT
routine in FW/LOAD now clears the
last char in the window with <fn-3>.
MLAO repaired. (continued on page 2)

PROGRAMBITEN 91-6 3

SWEDLOW TI BITS * 11-—-13 *

by Jim Swedlow, USA

(This article originally appeared in
the User Group of Orange County,
California ROM)

THE PARTS OF A DISK

E?
Y
o
[0
=

1

1

! IWrite
i i _Enable
i iNotch
| _ !

! () l

| (_) oIndex |

| Hole !

I _ !

H i IHead |

! i lAccess !

| | _IWindow |

| |

f=mmm - fem e i

Notches

QUOTES OF THE MONTH

"The game isn't over till it's-"
over."
---Yogi (Lawrence Peter) Berra

"The computer 'doth make fools of us
all."

---Weinberg

BELL COMPATIBLE?

Ever noticed that modem adds include
a statement about Bell compatibi-
lity? This will give you an idea of
what that means.

BELL 103A is the standard format for
transmitting data by telephone at
speeds of 300 baud or less.

BELL 202 is a standard format for
transmitting data by telephone at
1,200 baud. Bell 202 format is half
duplex only and has now largely been
replaced by Bell 212A.

BELL 212A is the standard format for
transmitting data by telephone at
1,200 baud.

WORD OF THE MONTH

BAUD: a unit that measures the speed
of data transmission. One baud
equals one bit per second. Or, 300
baud is 300 bits per second. That
is why 1200 baud is four times
faster than 300 baud. (Use baud only
for symbole rate of transmission and
use bit/s for information rate. The
symbole rate could sometimes be less
than the bitrate in bit/s. Ed. note)

MORE ACRONYMNS
Here are two more acronyms:

CD-ROM - "Compact Disk Read Only
Memory" - using the same CD's that
are becomming the rage for music to
store data. One CD can hold an en-
tire encyclopedia with space left
over. The current price of the
drives is high ($1000 or so) as are
the few CD-ROM's on the market ($300
to $1000+). Prices will come down,
however.

WORM - "Write Once Read Many" - the
next generation for CD-ROM, these
allow the user to write on CD disks
once and then read many, many times.
The drive has two laser devices, one
to write and one to read.

MORE QUOTES

"PRICE is what you pay NOW;
COST is what you pay LATER."
---A Pilgrims' Pride Catalog

"You may not always get what you pay
for but you never get what you don't
pay for!"

---Ibid.

MAILING LABELS

As the United States Postal Service
(USPS) uses more and more Optical
Character Readers (OCR's), a problen
is developing with computer generat-
ed mailing labels.

4 PROGRAMBITEN 91-6

According to an article in a recent
issue of InfoWorld, the USPS has
purchased some 400 OCR's since 1984
and it recently signed a contract
for over 400 more. These units can
process mail at speeds up to 35,000
pieces an hour (the hand rate is
about 900).

What's the mailing label problem?
Seems that the OCR's have trouble
reading mailing labels in compressed
print or when the dots don't touch.
The solution is to print your labels
in Near Letter Quality or Emphasized
Print and to use 10 to 12 characters
per inch. If in doubt, check with
your local post office.

TI LIVES!

I was looking thru the current issue
of MICROTIMES and spotted the list-
ing of user groups. Most orphan
computers have one or two user
groups in the greater Southern
California area. A few have three
groups.

One computer stood out with ten
{(count them, ten) user groups. None
other than our 4A.

EXPANDING YOUR SYSTEM

I have had a couple of conversations
recently about system expansion.
There are so many products available
today -- the Rave keyboard, RAM
disks, the GENEVE -- that it is
difficult to make decisions.

It is not my intent to tell you what
to do or buy, rather I hope to give
you some food for thought.

The first step in any expansion plan
is to do a needs assessment. Does
your current system meet your needs?
Where does it fall short? TI Writer
and Multiplan are quite powerful for
some applications and inadequate for
others. The 48 key keyboard that TI
gave us has limitations but is work-
able. Perhaps you just want to be
able to walk into a store again and
buy some NEW software.

The next step is much harder. How
much can you invest? As my boss once

said, this is where the rubber neets
the road. Your system may fall very
short of your needs and wants, but
if the dollars aren't there, they
aren't there.

Just for discussion purposes, lets
assume that you have a P box with
RS232, 32K and one or more drives
and that you can afford to spend
§700 to $1000 on upgrading your
system. How should you spend the
money? Here are two different
routes.

A TI SUPER SYSTEM: You could invest
you money in upgrading your current
TI system:

Item Low High
Print Spooler 5100 3100
RAM Disk 150 200
RAVE 99 Keyboard 185 200
Upgraded Disk Drives 100 300
Composite Color Monitor 150 200
Total $685 $1000

PRINT SPOOLER: There are many
options, including the CORCOMP
Triple Tech Card. You will find a
print spooler invaluable. Luckily,
TI opted for a standard Centronics
parallel interface. You plug your
printer cable into the spooler and
the spooler's cable into your
printer. Then all those long delays
during printing are gone and you
have real multi-tasking! When you
print something with the Formatter,
for example, about a quarter of the
way thru, your TI is done and ready
for other things while your printer
just clacks away. You will love it.

RAM DISK: If you have not seen one
of these demonstrated, it is an
electronic disk. To your system it
looks just like a disk drive but
many times faster. For example, you
press the key for the Formatter and
in one or two SECONDS you have the
Formatter. You may have passed the
point where computers seem like
magic but a RAM disk will.

KEYBOARD: My two major complaints
about my TI are the lack of an 80
column screen and the keyboard. Al-
though we have yet to see a fully
compatible 80 column card, RAVE 99

PROGRAMBITEN 91-6 5

does sell a full size keyboard for
about $200 and a device for attach-
ing an IBM style keyboard for about
$150 (comes out to around $200).

Look for other devices in the near
future.

DISK DRIVES: If you have single
sided drives, you can increase your
storage capacity. One way is to up-
grade to double sided drives. All
three Disk Controller Cards (TI,
MYRAC and CORCOMP) support double
sided drives. Twice the space is a
joy. If you have trouble with in-
stalling them, you may need help
from an experienced user group
member.

Another approach is to replace your
TI Disk Controller card with one
from MYRAC or CORCOMP. This will
turn your drives into double density
drives (ALL of the drives TI sold
were single sided double density
drives - the TI disk controller card
didn't support double density). You
may have limited compatibility
problems as a few programs that
access disk drives don't work with
non-TI cards.

Jumping from SSSD to DSDD quadruples
your disk storage space!

COLOR MONITOR: If you are still
using a TV, you will be amazed at
the improvement that you will get
from a monitor. Crisper colors.
Clarity from edge to edge and mini-
mal distortion.

TWO WORDS ON PRICE: Shop around. As
I was preparing for this article, I
found quite a range in prices for
the same item and items for the task
at hand. Prices quoted here are
middle of the range.

So, folks, there you have it - two
ways to spend your $700 - $1000.
Now, if only I could get my hands on
the bucks!

WORD OF THE MONTH

ERGONOMICS: The science of tailoring
an environment to suit the worker.

It has become more than a mere catch
phrase - it is now a major player in

the struggle to win a profit.

MILLER GRAPHICS' NIGHT MISSION

I should have bought this long ago,
but the money and the opportunity
never came together.

As a game, it is a good one. The
speed is amazing when you consider
that it is 100% Extended Basic.
This alone justifies the $20 price
tag.

The real value, in my opinion, is
the documentation. Sure, it has the
game instructions, but it also in-
cludes three other sections.

First, it explains the program, line
by line. You WILL learn new Extend-
ed BASIC programming technigues by
reading this.

Second, it has a list of CALL LOAD's
and CALL PEEK's, some of which are
new.

Third, it has a very interesting
section on 'The Power of AND'. This
is a completely new programming de-
vice.

As a game, as a tutorial or as both,
this is a wise purchase.

XB PROGRAMMING TIP

I was working on a program and I ran
into something interesting.

I had a variable (A) that could only
be either 9 or 7. I needed to sepa-
rate the beginning of a string. If
A was 9, I needed the first 5
characters in the string, otherwise
I needed the first 4 characters.

My first approach was:

IF A=9 THEN N$=SEGS$(AS$,1,5)
ELSE N$=SEGS$ (A$,1,4)

That seemed bulky so I tried this:
N$=SEGS(AS,1,5+(A=7))
[This works because if A is 7, the

expression (A=7) returns -1. Other-
wise it returns 0. If this is not

6 PROGRAMBITEN 91-6

clear, try this loop:

FOR A=6 TO 8 ::
PRINT A;A=T7;5+(A=T) ::
NEXT A

Note that the parenthesis are only
needed for 5+(A=7). Without them,
your TI would compare 5+A to 7.]

Back to my tip. That was hetter,
but I did a bit of fiddling and
realized that 0.6 times 9 is 5.4 and
0.6 times 7 is 4.2. I tried this:

N$=SEGS (AS,1,INT(A*.6))

Then I wondered if the INT was
needed. It turns out that SEG$
(like many TI functions) auto-
matically rounds off.

How can you tell if a function
rounds? Try using it in a loop:

FOR I=1 TO 2 STEP .1
PRINT I;SEGS("ABC",1,I)
NEXT I

My final expressions was:

N$=SEGS (AS$,1,A*.6)

XMODEM

You may have heard of a transfer
protocol called XMODEM and wondered
what it is. If you use FAST-TERM or
4A TALK, you probably use it. The
following should give you some idea
of how it works.

When you communicate with another
computer on phone lines thru modems,
your data must travel thru the sanme
voice phone lines that we use every
day. Some connections are better
than others. Most have noticeable
static.

You brain, a computer whose power
has never been equaled, can usually
distinguish the 'data' (voice) from
the 'noise' (static). It is almost
impossible for your computer to make
this judgement.

In the early days of data transfer,
data was simply sent and the receiv-
ing computer had to do as good a job
as it could to distinguish between

data and noise. In a text, or DV80
file, this was not a major problem.
If one character was bad you could

easily find the problem and edit it.

With a memory image or Program file,
however, one bad byte could render
the entire file useless. Although
editing is possible, it is very
tricky.

In August 1977, Ward Christensen
developed an error detection method
he called MODEM2. It was also
dubbed "Christensen" protocol or
XMODEM.

It was very simple. Data is sent in
blocks of 128 bytes. XMODEM adds up
the values of all the characters in
each block and compares that number
with a total that is sent by the
sending computer. If they don't
agree, the receiving computer sends
a code to the sending computer and
the block is transmitted again.

In 1982, Ward Christensen and Chuck
Forsberg released an enhancement
called Cyclic Redundancy Checking
(CRC). CRC does sequential division
on each character in the block re-
sulting is a significant improvement
in error detection.

Both protocols continue to be called
XMODEM. Although others have been
developed, XMODEM is used by all
major systems, including Compuserve.
(Source: an article in FOGLIGHT)

TI WRITER TIP

Find String (FS) is a powerful tool
for finding something in a document.
Just hit FCTN 8 and then enter FS.
Your TI Writer gives you this
prompt:

FIND enter /string/ :

You enter your string and use the
slash as limiters. If you want to
find the word "John", you would
enter /John/. If you wanted to find
John only when it is used as the
last word in a sentence, you would
enter /John./.

Should the "John" you find not be
the one you wanted, you would go

PROGRAMBITEN 91-6 7

back to command mode and enter FS
again. You will find /John./ still
there. You just press enter and the
search resumes.

Lets say, however, that now you want
to find the word "Mo". But /John./
is on your screen. You could delete
/John./. You could type in Mo but
then you would have this:

/Mo/n./

Need you worry about the text after
the second slash? No. Your TI
Writer only searches for the infor-
mation between the first and second
slash. It ignores everything to the
right of the second slash.

You will have a problem with that if
you use Replace String, but that is
another story.

THE PAPERLESS OFFICE

One of the things that futurists
often project is the paperless
office. Everything would be done on
computers so paper would virtually
disappear.

Not necessarily so. According to an
article in a recent issue of 'The
Office', the demand for paper has
been increasing at the rate of 5% to
8% a year. Growth is exXpected to
continue at that rate.

Cited reasons include the continuing
shift from a production to a service
economy and the fact that computers
generate reams of paper. Also noted
were the need to generate hard
copies for filing and the prolifera-
tion of photocopy machines.

Enjoy.

BATTLE STAR

Anvidnd tangenterna E-X respektive
S-D for att skjuta ned de fientliga
vita rymdskeppen och de réda robot-
arna. Du maste ha fyra fingar sam-

100 REM **xkkkkkkkkkxkxk

110 REM *BATTLE STAR*

120 REM *kkkkkkkkkkkk

130 REM BY W.K.BALTHROP

140 REM 99'ER 82-06 XB

180 RANDOMIZE :: DIR=1 :: CA

LL CLEAR

190 CALL COLOR(9,7,1,10,6,1)
CALL SCREEN(2)

200 CALL CHAR(96,"0000000000

0707071818183C7EFFDB99000000

0000EOEOE0070E1CFFFF1COEO7")

220 CALL CHAR(104,"18423C999

93C4218",101, "E07038FFFF3870

E0070707")

230 CALL CHAR(107,"104628240

A923044",103,"99DBFF7E3C1818

18",100, "EOEOE")

250 CALL CHAR(112,"30787C477

C7830001010386CEEEE7C000C1E3

EE23E1E0C00007CEEEE6C38101")

270 CALL CHAR(116,"101038FE3

81010000000183CFF7E2442",105

,"1818181818181818000000FFFF

Il)

290 FOR COL=1 TO 12 :: CALL

COLOR (COL,16,1) : : NEXT COL

SPEL FOR XB

tidigt p&d de fyra tangenterna. An-
vind ena handen fér upp-ned och den
andra foér vidnster-hdger. Robotarna
far ej traffa dig.

300 L=100 :: S=5 :: SC,SAl,S
B1,SA2,SB2,SA3,SB3,SA4,5B4,T
=0

310 GOSUB 350

320 GOSUB 390 GOSUB 650
330 L=L-.5 IF L<1 THEN L=
il

340 DISPLAY AT(24,3):8C :: G
OTO 320

350 CALL SPRITE(#10,96,16,81
218,00 411,97, 16,81,121.0,
0,#12,98,16,81,129,0,0)

360 CALL SPRITE(#13,99,16,89
,113,0,0,#14,104,7,89,121,0,
0,#15,101,16,89,129,0,0)

370 CALL SPRITE(#16,102,16,9
7.,113,0,0,.#17,103,16,97,121,
0,0,#18,100,16,97,129,0,0)
380 RETURN

390 CALL KEY(3,K,S)::
THEN RETURN

400 IF K=69 THEN 450 ELSE IF
K=83 THEN 500 ELSE IF K=88
THEN 550 ELSE IF K=68 THEN 6
00

440 RETURN

450 IF SA1=0 AND SB1=0 THEN

IF s=0

8 PROGRAMBITEN 91-6

CALL VCHAR(1,16,105,10):: Ca

LL SOUND(10,800,0):: CALL VC

HAR(1,16,32,10):: SC=SC-10 :
: RETURN

460 IF SB1=0 THEN CALL VCHAR
(2,16,105,9):: CALL SOUND(50

0,110,2,-5,2):: CALL VCHAR(2
16,32,9):: SC=SC+50 :: SAl=

0 :: RETURN

470 CALL POSITION(#1,P1,P2):
IF P1>76 THEN 840

480 P1=INT(P1/8)+1 :: CALL V

CHAR(P1,16,105,10-P1):: CALL
SOUND(200,110,10,-5,8):: CA

LL VCHAR(P1,16,32,10-P1)

490 CALL DELSPRITE(#1):: SC=

SC+20 :: SB1=0 :: RETURN

500 IF SA2=0 AND SB2=0 THEN

CALL HCHAR(12,1,106,14):: Ca

LL SOUND(10,800,0}):: CALL HC

HAR(12,1,32,14):: SC=SC-10
RETURN

510 IF SB2=0 THEN CALL HCHAR
(12,3,106,12):: CALL SOUND(5

00,110,2,-5,2):: CALL HCHAR({

12,3,32,12):: SC=SC+50 :: SA

2=0 :: RETURN

520 CALL POSITION(#2,P1,P2):
IF P2>86 THEN 840

530 P2=INT(P2/8)+1 :: CALL H

CHAR(12,P2,106,15-P2):: CALL
SOUND(200,110,10,-5,8):: CA

LL HCHAR(12,P2,32,15-P2)

540 CALL DELSPRITE (#2):: SC=

SC+20 :: SB2=0 :: RETURN

550 IF SA3=0 AND SB3=0 THEN

CALL VCHAR(14,16,105,10):: C

ALL SOUND(10,800,0):: CALL V

CHAR(14,16,32,10):: SC=SC-10
:: RETURN

560 IF SB3=0 THEN CALL VCHAR
(14,16,105,10) : : CALL SOUND/(

500,110,2,-5,2):: CALL VCHAR
(14,16,32,10):: SC=SC+50

SA3=0 :: RETURN

570 CALL POSITION(#3,P1,P2):
IF P1<110 AND P1>0 THEN 84

0

580 P1=INT(P1/8)+1 :: CALL V

CHAR(14,16,105,P1-14):: CALL
SOUND(200,110,10,-5,8):: CA

LL VCHAR(14,16,32,P1-14)

590 CALL DELSPRITE(#3):: SC=

SC+20 :: SB3=0 :: RETURN

600 IF SA4=0 AND SB4=0 THEN

CALL HCHAR(12,18,106,14):: C

ALL SOUND(10,800,0):: CALL H

CHAR(12,18,32,14):: SC=sCc-10

RETURN

610 IF SB4=0 THEN CALL HCHAR
(12,18,106,13) :: CALL SOUND (

500,110,2,-5,2):: CALL HCHAR

(12,18,32,13):: SC=SC+50

SA4=0 :: RETURN

620 CALL POSITION(#4,P1,P2):
IF P8<142 AND P8>0 THEN 84

0

630 P2=INT(P2/8):: CALL HCHA

R(12,18,106,P2-15):: CALL SO

UND(200,110,10,-5,8):: CALL

HCHAR(12,18,32,P2-15)

640 CALL DELSPRITE(#4):: SC=

SC+20 :: SB4=0 :: RETURN

650 IF SB1=0 THEN P1,P2=0 EL

SE CALL POSITION(#1,P1,P2)

660 IF SB2=0 THEN P3,P4=0 EL

SE CALL POSITION(#2,P3,P4)

670 IF SB3=0 THEN P5,P6=0 EL

SE CALL POSITION(#3,P5,P6)

680 IF SB4=0 THEN P7,P8=0 EL

SE CALL POSITION(#4,P7,P8)

690 IF P1>76 OR P4>86 OR(P5«

110 AND P5>0)OR(P8<142 AND P

8>0)THEN 840

700 NS=INT (RND*L):: IF NS>10

THEN RETURN

710 NS=INT(RND*4)+1 :: ON NS

GOTO 730,760,790,820

720 IF SAl=1 AND SBl=1 THEN

RETURN

730 CALL HCHAR(2,16,115):: S

Al=1 :: IF L<80 AND SB1=0 TH

EN CALL SPRITE(#1,116,7,17,1

20,11-(L/10),0):: SB1l=1

740 RETURN

750 IF SA2=1 AND SB2=1 THEN

RETURN

760 CALL HCHAR(12,3,112):: S

A2=1 :: IF L<80 AND SB2=0 TH

EN CALL SPRITE(#2,116,7,88,1

7,0,11-(L/10)):: SB2=1

770 RETURN

780 IF SA3=1 AND SB3=1 THEN

RETURN

790 CALL HCHAR(23,16,113)::

SA3=1 :: IF L<80 AND SB3=0 T

HEN CALL SPRITE(#3,116,7,175

,120,-11+(L/10),0):: SB3=1

800 RETURN

810 IF SA4=1 AND SB4=1 THEN

RETURN

820 CALL HCHAR(12,30,114)::

SA4=1 :: IF L<80 AND SB4=0 T

HEN CALL SPRITE(#4,116,7,88,

216,0,-11+(L/10)):: SB4=1

830 RETURN

840 CALL DELSPRITE (#1,#2,#3,

#4):: CALL SOUND(2000,110,2,

220,2,1000,30,-4,2)

850 FOR BUB=10 TO 18 :: CALL

MOTION (#BUB, INT (RND*40)-20,

INT (RND*40)-20) :: CALL PATTE

RN (#BUB,107) : : NEXT BUB

860 CALL SOUND(1000,110,2,22

PROGRAMBITEN 91-6 9

0,2,110,2,-5,2):: CALL SOUND
(1,40000,30)

870 CALL DELSPRITE(ALL):: CA
LL CLEAR

880 DISPLAY AT(12,7):"YOUR S
CORE IS": :TAB(10);scC

900 DISPLAY AT(22,1):"DO YOU
WISH TO PLAY AGAIN? (Y/N)"
910 ACCEPT AT(23,8)VALIDATE(

"YN") :ANSS
EN 950

920 CALL CLEAR :: GOSUB 350
:: SC=0 :: L=100

930 SB1,SB2,SB3,SB4,P1,P2,P3
,P4,P5,P6,P7,P8=0

940 RETURN

950 END

IF ANSS="N" TH

DEBUGGING EXTENDED BASIC

by Jim Peterson, Tigercub, USA

When you have finished
writing a program, the next
thing you should do is to
run 1it. And, very probably,
it will crash!

Don't be discouraged. It
happens to the very best of
programmers, very often.

So, the next thing to do
is to debug it. And you are
lucky that you are using a
computer that helps you to
debug better than some that
cost ten times as much.

There are really three
types of bugs. The first
type will prevent the pro-
gram from running at all -
it will crash with an error
message. The second type
will allow the program to
run, but will give the wrong
results.

And the third type, which
is not really a bug but
might be mistaken for one,
results from trying to run a
perfectly good program with
the wrong hardware, or with
faulty hardware. As for
instance, trying to run a
Basic program, which uses
character sets 15 and 16, in
Extended Basic.

First, 1let's consider the
first type. The smart little
I computer makes three
separate checks to be sure
your program is correct.
First, when you key in a
program line and hit the
Enter key, it looks to see
if there 1is anything it
can't understand - such as a

misspelled command or an un-
matched quotation mark. If
so, it will tell you so,
most likely by SYNTAX ERROR,
and refuse to accept the
line.

Next, when you tell it to
RUN the program, it first
takes a quick look through
the entire program, to find
any combination of commands
that it will not be able to
perform. This is when it may
crash with an error message
telling you, for instance,
that you have a NEXT without
a matching FOR, or vice
versa.

And finally, while it is
actually running and comes
to something that it just
can't do, it will crash and
give you an error message -
probably because a variable
has been given a value that
cannot be wused, such as a
CALL HCHAR(R,C,32) when R
happens to equal 0.

The TI has a wide variety
of error nmessages to tell
you when you did something
wrong, what you did wrong,
and where you did it wrong.
But, it «c¢an be fooled! For
instance, try to enter this
program line (note the
missing quotation mark).

100 PRINT "Program must be s
aved in:"merge format."

And, sometimes you may be
told that you have a
STRING-NUMBER MISMATCH when
there is no string involved,
because the computer has

10 PROGRAMBITEN 91-6

tried to read a garbled
statement as a string.

Also, the 1line number
given in the error message
is the 1line where the com-
puter found it impossible to
run the program; that line
may actually be correct but
the wvariables at that point
may contain bad values due
to an error in some previous
line.

If the error occurs in a
program line which consists
of several statements, and
you cannot spot the error,
you may have to break the
line into individual single-
statement lines. This is the
easiest way to do that -
Be sure the line numbers are
sequenced far enocugh apart.
Bring the problem 1line to
the screen, put a ! just be-
fore the first ::, and enter
it. Bring it back to the
screen with FCTN 8, retype
the 1line number 1 higher,
use FCTN 1 to delete the
first statement and the !
and ::, put a ! before the
first ::, and continue.
Then, when you have solved
the bug, Jjust delete the !
from the original line and
delete all the temporary
lines.

Pages 212-215 of your
Extended Basic manual list
almost all the error codes,
and almost all the causes of
each one - it will pay you
to consult these pages
rather than guessing what is
wrong.

You may create some really
bad bugs when you try to
modify a program that was
written by someone else -
especially if you add any
new variable names or CALLs
to the program. Your new
variable might be one that
is already being used in the
program for something else,
perhaps in a subscripted
array. I have noticed that
programmers rarely use @ in

a variable name, so I always
tack it onto the end of any
variable that I add to a
program.

Also, the program that you
are modifying may have ON
ERROR routines, or a pre-
scan, already built in. The
ON ERROR routine was inten-
ded to take <care of a
different problem than the
one you create, so it could
lead you far astray - you
had better delete that ON
ERROR statement until you
are through modifying.

The prescan had better be
the subject of another les-
son, but if the program has
an odd-looking command !@P-
up near the front somewhere,
it has a prescan built in.
And if so, if you add a new
variable name or use a CALL
that isn't in the program,
you will get a SYNTAX ERROR
even though there is no
error. One way to solve this
is to insert a 1line with
!@P+ just before the problem
line, and another with !@P-
right after it.

When a program runs, even
though it c¢rashes or is
stopped by FCTN 4 or a
BREAK, the wvalues assigned
by the program to variables
up to that point will remain
in memory until you RUN
again, or make a change to
the program, or c¢lear the
memory with NEW. This can be
very useful. For instance,
if the program crashes with
BAD VALUE 1IN 680, and you
bring line 680 to the screen
and find it reads
CALL HCHAR(R,C,CH) :
just type PRINT R;C;CH and
you will get the values of
R, C and CH at the time of
the c¢rash. You will £find
that R 1s 1less than 1 or
more than 24, or C is less
than 1 or more than 32, or
CH is out of range.

In Extended Basic, you can
even enter and run a multi-
statement line in immediate
mode (that is, without a
line number), 1if no refer-

PROGRAMBITEN 91-6 11

ence 1is made to a line num-
ber. So, you can dump the
curent contents of an array
to the screen by
FOR J=1 TO 100::PRINT A(J);:
NEXT J - or you can even
open a disk file or a prin-
ter to dump it to.

You can also test a
program by assigning a value
to a variable from the

immediate mode. If you BREAK
a program, enter A=100 and
then enter CON, the program
will continue from where it
stopped but A will have a
value of 100.

You can temporarily stop a
program at any time with
FCTN 4, of course (the
manual says SHIFT C, but it
was written for the o0ld
99/4), and restart it from
that point with CON. Or you
can insert a temporary line
at any point, such as 971
BREAK 1f you want a break
after 1line 970. Or, you can
put a line at the beginning
of the program listing the
line numbers before which
you want breaks to occur,
such as 1 BREAK 960,970,980
Note that in this case the
program breaks Jjust BEFORE
those listed line numbers.
You can also use BREAK fol-
lowed by one or more line
numbers as a command in the
immediate mode.

The problem with wusing
BREAK and CON is that BREAK
upsets your screen display

format, resets redefined
characters and colors to the
default, and deletes

sprites. So, it is sometimes
better to trace the assign-
ment of wvalues to your
variables by adding a temp-
orary line to DISPLAY AT
their wvalues on some unused
part of the screen. If you
want to trace them through
several statements, it will
be better to GOSUB to a
DISPLAY AT. And if you need
to slow up the resulting
display, just add a CALL KEY
routine to the subroutine.

Sometimes, your program
will appear to be not flow-
ing through the sequence of
lines you intended (perhaps
because it dropped out of an
IF statement to the next
line!) and you will want to
trace the line number flow.
This can be done with TRACE,
either as a command from the
immediate mode or as a pro-
gram statement, which will
cause each 1line number to
print to the screen as it is
executed. If used as a com-
mand, it will trace every-
thing from the beginning of
the program, so it is
usually better to insert a
temporary line with TRACE at
the point where you really
want to start. Once you have
implemented TRACE, the only
way to get rid of it is with
UNTRACE.

TRACE has its limitations
because it «can't tell you
what 1is going on within a
multi-statement line, and it
will certainly mess up any
screen display. Sometimes it
is better to insert tempo-
rary program lines to dis-
play line numbers. I use
CALL TRACE() with the line
number between the paren-
theses, and a subprogram
after everything else
30000 SUB TRACE(X) ::DISPLAY

AT(24,1):X :: SUBEND

Some programmers use ON
ERROR combined with CALL ERR
as a debugging tool, but I
can't tell you much about
that because I have never
used it. ON ERROR can give
more trouble than help if
not used very carefully, and
I cannot see that CALL ERR
gives any information not
available by other means.

Sometimes you can debug a
line by simply retyping it.
It 1is only very rarely that
the computer 1is actually
interpreting a line differ-
ently than it appears on the
screen, but retyping may
result 1in correcting a typo
error that you just could

12 PROGRAMBITEN 91-6

not see. In fact, most bugs
turn out to be very simple
errors.

When you are debugging a
string-handling routine,
don't take it for granted
that a string is really as
it appears on the screen -
it may have invisible char-
acters at one or both ends.
Try PRINT LEN(MS$) to see if
it contains more characters
than are showing; or PRINT
"k"EMS&"*" to see if any
blanks appear between the
asterisks and the string.

There is no standard way
to debug a program. Each
problem presents a challenge
to figure out what is going
wrong, to devise a test to
find out what 1is really
happening.

Don't debug by experimen-—
ting, by changing variable
values just to see what will
happen, etc. Even if you
succeed, you will not have
learned what was wrong so
yvou will not have learned
anything - and if your pro-
gram contains lines that you
didn't wunderstand when you
wrote them, you will have
real problems if you ever
try to modify the program.
(I speak from experience!)m

100 ! SILENTNITE, BUG NEWS

103 CALL CLEAR

104 DISPLAY AT(4,8):"SILENT

NIGHT"

105 DISPLAY AT(8,0) :"Graphic

s: B August BUG 12/87": :"Mu

sic : D Weaver TIRUG 10/87"

106 DISPLAY AT(11,2):"'Orkes

tration' and Doctoring ":"
Earl Raguse 2/88"

107 DISPLAY AT(18,3) :"PRESS

ANY KEY TO PROCEED"

108 CALL KEY(3,K,S):: IF sS=0

THEN 108

109 CALL CHARSET

110 RANDOMIZE :: CALL CLEAR
CALL SCREEN(1l):: CALL CHA

R(48,"80COEOFOF8FCFEFF",49,"

0103070F1F3F7FFF",56,"000000

001C46FF42")

120 FOR CH=71 TO 82 :: READ

D$:: CALL CHAR(CH,DS$):: NEX
T CH :: FOR SET=2 TO 7 :: RE
AD FC,BC :: CALL COLOR(SET,F

C,BC):: NEXT SET

130 CALL HCHAR(20,4,71,2)::

CALL HCHAR(21,4,71,3):: CALL
HCHAR(22,1,40,96):: FOR D=1
TO 45 :: READ R,C,CH :: CAL

L. HCHAR(R,C,CH):: NEXT D

140 COL=COL+1 :: CH=INT(RND*

7)+72 :: CALL GCHAR(21,COL,C

OI):: IF COI<>32 THEN 140 EL

SE CALL HCHAR(21,COL,CH):: I

F COL<>32 THEN 140 ELSE 500

150 END

160 DATA FFFFE7TETE7E7TE7FFFF,

103038383C7C7E18,000018183C3

C7E18,0040387C3C181091,00000

000001818BB,00001018383C7D13

170 DATA 183C7E3C181818,0000

00000044EEEF,1,1,071E3C7C78F

8FOF0,FOFOF8787C3C1E07,16,16
e15,447:14541%,:13,2,16,%

180 DATA 5,9,81,6,9,82,19,4,

49,19,5,48,20,6,48,20,20,49,

20,21,48,21,8,56,21,20,71,21
,21,71,21,23,56

190 DATA 2,5,80,2,32,80,3,12
,80,4,10,80,4,15,80,4,17,80,

4,21,80,5.3,80,5,7,80,5,17,8

0

200 DATA 6,16,80,6,27,80,7,4
,80,7,7,80,7,21,80,7,28,80,8
,12,80,8,25,80,9,15,80,10,18
,80,10,31,80

210 DATA 11,12,80,12,5,80,12
;20,80,14,7.80,15,25,80,15,2
,80,16,1,80,16,10,80

220 DATA 17.7.80,17,16,80,17
,20,80,18,4,80,18,30,80

500 ! From TIRUG, by David W

eaver, doctored by E Raguse

510 RESTORE 590

540 FOR I=1 TO 46

550 READ X,Y

560 DUR=200

570 CALL SOUND(X*DUR,Y/2,0,Y

/1.99,8,Y/2.01,6)

580 NEXT I

585 FOR T=1 TO 700 :: NEXT T
:: CALL CLEAR :: END

590 DATA 3,784,1,880,2,784,6
,659,3,784,1,880,2,784,6,659

600 DATA 4,1175,2,1175,6,988
,4,1047,2,1047,6,784,4,880,2
,880,3,1047,1,988,2,880

610 DATA 3,784,1,880,2,784,6
,659,4,880,2,880,3,1047,1,98

8,2,880

620 DATA 3,784,1,880,2,784,6
,659,4,1175,2,1175,2,1397,2,

1175,2,988

630 DATA 6,1047,6,1319,2,104

7.2,784,2,659,2,784,2,698,2,

587,112,523 [

PROGRAMBITEN 91-6 L3

GRAPHIC1 FOR ASSEMBLER

av Jan Alexandersson
9918A/9929A FOR TI-99/4A

TI-99/4A har en videoprocessor
9918A/9929A som har fyra olika
grafikmoder:

MAX MINNE ---TECKEN---
MODE FARG KBYTES FARG PUNKTER
Graphicl 16 4 2 8x8
Graphic2 16 16 16 8x8
Textl 2 4 2 6x8
Multicolor 16 4 16 2x2

Graphicl delar upp skédrmen i rutor
med 24 rader och 32 kolumner. Varje
sddan ruta kan fyllas med ett av 256
méjliga grafiska tecken. Varje
teckenruta bestar av 8x8 punkter.
Ett sddant tecken kan ha tvd férger
av 16 méjliga. Atta tecken med nér-
liggande ASCII-nummer méste ha samma
farger. Dessutom kan man ha upp
till 32 olika sprites som légges
ovanpd grafikskirmen.

Du mdste initiera videoprocessorns 8
olika register (#0-#7) fér att kunna
anvdnda Graphicl pd féljande sétt:

#0 »>00 bindrt 0000 0000

#1 >E0 bindrt 1110 0000

#2 vardet x >400 = Screen Table

#3 védrdet x >40 = Color Table

#4 vidrdet x >800 = Pattern Table

#5 wvirdet x >80 = Sprite Attribute

#6 virdet x >800 = Sprite Pattern
#7 hogra hexdelen= Screen Color

Lds mera om VDP-register i PB 89-4.

TABELL 99/4A REG BYTES PLATSER

SCREEN 2 768 16
COLOR 3 32 256
PATTERN 4 2048 8
SPRITE ATTRIBUTE 5 128 128
SPRITE PATTERN 6 1024 8
TOTALT 4000 4

Skdrmtabellen kan placeras pa 16 o-
lika stdllen genom att >00 till >OF
skrivs till VDP-register #2. An-
talet méjliga placeringar minskas
eftersom de 6vriga tabellerna miste
finnas nigonstans samt av att VDP-
RAM dven anvidnds som diskbuffert
m.m.

Khkkkhkhkhkkhkhkkhkkhkkhkkhkkhkkkkk

* Graphicl DEMO PROGRAM 1
* for 99/4A

* by Jan Alexandersson

* 1991-08-25
kkkkkkkhkhkkhkhkhkkkkhkhkhkhkhkkkkk

DEF START

WS BSS >20
RTN DATA O

START MOV RI11,@RTN
LWPI WS
BL @Gl4A

save return
graphicl

***x*x** print message on the screen
LI RO,5*32+8+SCRTAB
LI R1,TEXT1
LI R2,16
BLWP @VMBW

LI RO,23*32+6+SCRTAB
LI R1,TEXT2

LI R2,19

BLWP @VMBW

kxxxx* ywait for key before return
LI RO, >2000
KEYLP BLWP @KSCAN
MOVB @STATUS,R1
CoC RO,R1
JNE KEYLP

key scan

test EQ bit

CLR R1

MOVB R1,@STATUS

LWPI GPLWS

MOV @RTN,R11

RT return

TEXT1 TEXT 'Test of GRAPHICL'
TEXT2 TEXT 'PRESS ENTER TO EXIT'
EVEN

COPY "DSK2.G1-TAB-4A"
COPY "DSK2.Gl4a"
COPY "DSK2.BLKVDP"

COPY "DSK2.VDP-UTIL" PB91-2
COPY "DSK2.KSCAN"
COPY "DSK2.GPLLNK" PB91-2

END

AhkkA kAKX Ak Ak kkhkkkkhkkkhkkkkkkkk

* G1-TAB-4A tables for 99/4A

* in Graphicl mode
khkkkkkkkhkkkhkkhkkkhkhkhkkhkkhkkhkkkkk

14 PROGRAMBITEN 91-6

SCREEN
SCREND
PATTER
PATEND
COLOR

COLEND
ATTRIB
SCRCOL
COLCHR

SCRTAB
PATTAB
COLTAB
ATTADR

EQU 0

EQU 24*32
EQU 1

EQU >800
EQU OE
EQU >20
EQU 6

EQU 3

EQU >1300

green screen
black on green

EQU
EQU
EQU
EQU

SCREEN*>400
PATTER*>800
COLOR*>40
ATTRIB*>80

kkkkkkkkhkhkkkkkkkkkkkkkk

* Gl4A

initialize

* Graphicl for 99/4A
* by Jan Alexandersson

* 1991-08-25

Ahkkhkhkhkhkhkhkkkhkhkkhkkikkkkkkk

FAC EQU >834A

STATUS EQU »>837C

KEYBRD EQU >8374

CRIGHT DATA >3C42,>99A1,>A199,>423C

CURSOR DATA >7070,>7070,>7070,>7070
DATA >007E,»>4242,>4242,>7E00

Gl4A MOV R11,R10 save return
LI RO,>01RA0 screen off
BLWP @VWTR »
CLR RO VDP-reqg #0
BLWP @VWTR

% % % %k % %k

kkkkkk

kkkkkk

kkkkkk

Kk kkkk

kkkkkk

*kkkkk

dkkkkk

screen table

LI RO, >0200+SCREEN
BLWP @VWTR

colour table

LI RO, >0300+COLOR
BLWP @VWTR

pattern table

LI RO, >0400+PATTER
BLWP @VWTR

sprite attribute table
LI RO,>0500+ATTRIB
BLWP @VWTR

screen colour

LI RO, >0700+SCRCOL
BLWP @VWTR

standard keyboard = 0
CLR RO

MOVB RO,@KEYBRD

number of moving sprites =0
MOVB RO,@>837A

clear screen table
BL @BLKVDP
DATA SCRTAB,»>2000,SCREND

PROGRAMBITEN 91-6

kkkkkk

DO removes standing sprites
LI RO,ATTADR

LI R1,>D000

BLWP @VSBW

kk%x colour table initialize

% %k %k kxk

%k kkkk

kkkkkk

kkkkkk

kkkdkkk

BL @BLKVDP
DATA COLTAB,COLCHR,COLEND

clear pattern table
BL @BLKVDP
DATA PATTAB,O,PATEND

normal char 32-95
LI RO,PATTAB+>100
MOV RO,@FAC

CLR R1

MOVB R1,@STATUS
BLWP @GPLLNK

DATA >18

lower char 96-127
LI RO,PATTAB+>300
MOV RO,@FAC

MOVB R1,@STATUS
BLWP @GPLLNK

DATA »>4A

char 10 = copyright
LI RO,PATTAB+>50
LI R1,CRIGHT

LI R2,8

BLWP @VMBW

char 30-31 = cursor
LI RO,PATTAB+>FO
LI R1,CURSOR

LI R2,16

BLWP @VMBW

LI RO,>01EQ
BLWP @VWTR
SWPB RO

MOVB RO,@>83D4

screen on

for KSCAN

B *R10 return

Kkkkkkkhkhkkkkkhkkkhkkkkhkkkkkkkkkkkkkk

* BLKVDP by Mack McCormick

* revised by Jan Alexandersson

* writes data to a block of VDP RAM
* gsee PB 91-3 page 18

kkkkhkdkkkhkkkhkkkdkkkdkkhkkkkkhkkkhkkkkkkkk

VDPWA
VDPWD

BLKVDP

>8C02
>8C00

EQU
EQU

MOV
ORI

*R11+,R0
RO, >4000
MOV *R11+,R1
MOV *R11+,R2
SWPB RO

15

MOVB RO,@VDPWA

SWPB RO

MOVB RO,@VDPWA
BLKLP MOVB R1,@VDPWD

DEC R2

JNE BLKLP

RT

kkkkkkkkkkhkkkkhkkkkkkkkkkhkkkkkk

* KSCAN utility disassembled *
* by J.Peter Hoddie 1987 *
* use it together with *

* VDP-UTIL from PB 91-2 p.15 *
kkkkkkkkkkhkkkkhkkkkkdkhkkkkkkkk

KSCAN DATA UTILWS,KSCANO

KSCANO LWPI >83E0
MOV R11,@AK
BL @>000E
LWPI UTILWS
MOV R11,@>83F6
RTWP

kkkkkhkkhkkkhkkhhkkhkkkkkhkkhkkkkkkkkk

* Graphicl DEMO PROGRAM 2

* BIG CHAR from power up screen
* by Jan Alexandersson

* 1991-08-25

kkkkhkhkkkkkhkhkhkkkkkkhkkkkkkhkkkkkkk

DEF START

REF VMBW,VSBW,VWTR,GPLLNK
REF KSCAN,GPLWS

COPY "DSK2.G1-TAB-4A"
COPY "DSK2.G1l4A"
COPY "DSK2.BLKVDP"

WS BSS >20
RTN DATA O

START MOV R11,@RTN
LWPI WS
BL @Gl4Aa

save return
graphicl

k%k%x%x%* hig char 160-223 initialize
LI RO,PATTAB+>500
MOV RO,@FAC
CLR R1
MOVB R1,@STATUS
BLWP @GPLLNK
DATA >16

*xkx*x* print character set 0-255
CLR R1
LI RO,5*32+SCRTAB

LOOP BLWP @VSBW
INC RO

AT R1,>0100
JNE LOOP

x%x%%%* print message on the screen
LI RO, 23*32+64+SCRTAB

LI R1,TEXT
LI R2,19
BLWP @VMBW

*xkk*x* wajit for key before return
LI RO,>2000
KEYLP BLWP @KSCAN
MOVB @STATUS,R1
CoC RO,R1
JNE KEYLP

key scan

test EQ bit

CLR R1

MOVB R1,@STATUS

LWPI GPLWS

MOV @RTN,R11

RT return

TEXT TEXT 'PRESS ENTER TO EXIT'

END

9938 FOR 80-KOLUMNSKORT

Med videoprocessorn 9938 ska alla
VDP-register #0 - #7 initieras som
fér TI-99/4A ovan. Aven VDP-register
#1 bor initieras med >E0 dven om
manualen till 9938 anger >06. Detta
ir nédvéndigt om programmet &dven ska
kunna kéras med 9918A/9929A. Jag har
inte upptackt ndgra problem med mitt
AVPC-kort ndr jag anvander >EO.
Dessutom bér fdljande register
initieras:

#8 >88 aktiverar musen
i 0 0 o0 1 0o 0 O
MS O TP O VR 0 SPD O
MS = Mouse enable
TP = Color code 0 palette enable
VR = 64 kbit Video RAM
SPD= Sprite disabled

#9 >00 ger 60 Hz skdrmvdxling
0 0 0 0 0 0 0 0
LN O 0 0 IL 0 NT O
LN = Linjer 212 (26,5 rader)
IL = Interlace
NT = 50 Hz skédrmvixling

#10 Extended Color Table
#11 Extended Sprite Attribute Table
#14 vardet x >4000 4r Base Address

VDP-register #10 och #11 innehdller
de mest signifikanta bitarna foér

16 PROGRAMBITEN 91-6

adressen till respektive tabell
eftersom det behdvs 2 bytes fér att
skriva onskat virde.

TABELL 9938 REG BYTES PLATSER
SCREEN 2 864 128
COLOCR 10+3 32 2048
PATTERN 4 2048 64
SPRITE ATTRIBUTE 11+5 128 1024
SPRITE PATTERN 6 1024 64
TOTALT 4096 32
BASE 14 16384 8

I vart exempel fdér 9938 anvinds VDP-
minne 65536 och uppat. Virdet for
Color Table ar >40E (decimalt 1038).
Detta skrivs som >4 till #10 och >E
till #3. P4 motsvarande sidtt skrivs
vdrdet >208 for Sprite Attribute ()2
till #11 och >8 till #5). Man kan
endast adressera 0 till >3FFF via de
normala VDP-portarna. Hdgre
adresser kommer man &t genom att
skriva Base Address till VDP-
register #14. Det finns totalt 8
olika bankar som kan kopplas in nir
du skriver eller liser adressen.

Det finns inget som hindrar att du
sprider ut dina tabeller pid olika
Base Address. Kom bara ihdg att
skifta vdrdet i VDP-register #14
fére anropet av VDP-minne.

Man kan dven anvdnda VDP-register
#17 (hex >11) om man behdver skriva
vidrden till ett stérre antal VDP-
register som ligger i nummerféljd
med hjdlp av VDPID (VDP Indirect
Data) pa adress >8C06 (kallas port
#3 i manualen). Skriv férsta
registernumret till VDP-register #17
pa normalt sitt med BLWP @VWTR. Du
kan sedan skriva data till VDPID.
Registernumret stegas fram med auto-
increment vid upprepade skrivningar.

% e 3k %k vk gk ok ok %k vk vk ok ok ok vk ok ok ok ok ok ok ke ke ok

Graphicl DEMO PROGRAM 3
for 9938

use VDP RAM at 65536

by Jan Alexandersson
1991-08-25

kkkhkkhkkkhkkhkhkkhkhkkhkkkkkkkk

¥ * ¥ ¥ X

DEF START

REF VMBW,VSBW,VWTR,GPLLNK
REF KSCAN,GPLWS

COPY "DSK2.G1-TAB-38"

COPY "DSK2.G138"
COPY "DSK2.G1l4A"
COPY "DSKZ2.BLKVDP"

WS BSS »>20

RTN DATA 0

START MOV R11,@RTN save return
LWPI WS

BL @G138 graphicl
**kx%%%x fi]] the screen with @

BL @BLKVDP
DATA SCRTAB,>4000,SCREND

xxx%*x print message on the screen
LI RO,5*32+6+SCRTAB

LI R1, TEXT
LI R2,20
BLWP @VMBW

**kk%k%k wait for key before return
LI R0O,>2000

KEYLP BLWP @KSCAN key scan
MOVB @STATUS,R1
CoC RO,R1 test EQ bit
JNE KEYLP

%k%x restore to VDP RAM 0-16383
VDPID EQU >8C06 indirect data
LI RO, >0E00 base address
BLWP @VWTR
LI RO,>1102
BLWP @VWTR

#17 at #2

LI RO,RSTORE
LI R1,10
RSTLP MOVB *R0O+,@VDPID restore reg
DEC R1
JNE RSTLP

CLR R1

MOVB R1,@STATUS

LWPI GPLWS

MOV @RTN,R11

RT return

TEXT TEXT 'Graphicl - 26.5 rows'

RSTORE DATA >000E,>0106,>00F5 #2-#7
DATA >8800,>0000 #8-#11

END

e 3k % e %k ok %k e %k e ok %k ok 3k ok ok ok ok gk ok ok gk vk ok ok ke ke ok

* G1-TAB-38 tables for 9938
* in Graphicl with 212 lines
* at VDP address >10000 = dec 65536

kkkdkkhkhkhkhkkhkhkkhkhkhkkkhkkkhkkkhkkk

PROGRAMBITEN 91-6 17

SCREEN EQU 64
SCREND EQU 27%32
PATTER EQU 33
PATEND EQU >800
COLOR EQU >E
COLEXT EQU 4
COLEND EQU >20
ATTRIB EQU 8
ATTEXT EQU 2
SCRCOL EQU 3
COLCHR EQU >1300
BASE EQU 4

green screen
black on green

SCRTAB EQU SCREEN-64%*>400
PATTAB EQU PATTER-32*>800
COLTAB EQU COLOR*>40
ATTADR EQU ATTRIB*>80

kkkkkkhkhkhkkhkkkkkhkkkhkkkhkkkkkkk
* G138 initialize for 9938

* of Graphicl

* by Jan Alexandersson

* 1991-08-11

khkkkkkkhkkkkkkhkhkkkkhkkhkkkkkkkk

G138 MOV R11,R9
kxkkkk hase address
LI RO, >0EQQ0+BASE

save return

BLWP @VWTR

BL @Gl4A 99/4A init
LI RO,>01A0 screen off
BLWP @VWTR

LI RO, >0888 mouse enable
BLWP @VWTR

LI RO, >0980 212pix,60Hz
BLWP @VWTR

xxxx** extended color table
LI RO, >0AQ0+COLEXT
BLWP @VWTR

**x%*%* extended attribute table
LI RO, >OBOO+ATTEXT

BLWP @VWTR

LI RO, >01EQ sScreen on
BLWP @VWTR

B *R9 return [

RUMORS — V9978
by Don Jones, Chicago UG, USA

The following "rumor" comes from our
fine SysOp, Mike ("Wetsuit Warrior")
Maksimik: " Here are some new
rumours on the airwaves: In the
works at Yamaha is the new V9978
video chip, for the advanced M$X2
standard. Mostly pin compatible
with the 9938 and 9958 it is said to
provide 1024 by 848 pixel resolu-
tion, at 16 colors. This setup will
require more video RAM, (at least
twice as much) and can be accomp-
lished by adding another address bit
to the existing 7 bits, thereby
allowing a larger chip size, or by
adding more *CAS lines to the exist-
ing 3 bits, or both. Naturally,
more features can be added to the
chip in modes already existing, like
a true 512 X 424 X 512 color mode,
and other modes of display. Note
that any final specifications are up
to Yamaha. It is also rumoured that
the color bus will be used for the
extra banks of memory, thereby
making the Myarc mouse and all bus
mice unusable with the Geneve, or
any of the video cards out there.
(This is the same as with the 9958.)
It is hoped that the chip will be
released some time this year, if not
already. Some sources indicate that
prototypes are already being used in
Japan for development of a new video

game standard (seems like over-
kill!!) to be used in the higher end
game market. What this means for us
is TRUE VGA compatibility (since the
current systems fall short of the
1024 X 800 X 256 color standard).
Perhaps the new chip will even
address a meg of memory! Keep your
ears open and stay tuned!"™ And
thanks for the juicy "rumor" oh
mighty ROBOFROG!!!]

JUSTIFYING DECIMAL
by Earl Raguse, Bug News, USA

Console BASIC does not provide a
command for aligning decimal points
as does XBASIC with PRINT USING, but
here is a routine that does it well.
Its so easy, that I often use it in
XB, instead of PRINT USING. Lines 5
thru 8 do all the work, the rest are
for demonstration. Delete what you
wish, RESequence and SAVE in MERGE
format for MERGEing with you number
programs.
2 CALL CLEAR
3 INPUT "COLUMN FOR DECIMAL
POINT ":C
4 INPUT "INPUT A NUMBER ":X
5 X§=STRS (X)
6 IF POS(XS$,".",1)=0 THEN 7
ELSE 8
7 X§=X$&".00"
8 PRINT TAB(C-POS(X$,".",1))
1 X$
9 GOTO 4 .

18 PROGRAMBITEN 91-6

BEGINNER ASSEMBLER

BITSPRITE

by Mack McCormick, USA

%k 2k %k %k %k Kk %k ke ke sk %k e %k v ok %k ok ok ok ke ok ok sk ok sk ke ok ke sk ok ke ko ko ki

** SPRITES AND TEXT FROM BIT MAP %%
*% BY MACK MCCORMICK ek
xH ENTRY POINT START L
aX WORKSPACE AT >8300 i
* % RO,R1,R2 - GEN VDP *%

* %k
%%

NO RESERVED REGISTERS ON EXIT **

* %

FOR MORE INFO SEE MY SPRITE TUTORIAL
** SET UP FOR A MEMORY IMAGE SAVE *%

khkkhkkkhkkhkhkkkkkkhkhkkkkkhkhkkkkkhkhkkkhkkkkkkkkk

SLOAD
SFIRST
PDT
SVVDP1
SIT

CcT
SATAB
SDTAB
STATUS
WS

* DATA
VDPREG
SPRITE
SALINT
CHRTAB

STRING

* BEGI

START

DEF START,SFIRST,SLAST,SLOAD
REF VSBW,VMBW,VSBR,VMBR,VWTR

B @START
EQU >0000
EQU >83D4
EQU >1800
EQU >2000
EQU >1B0O
EQU >1C00
EQU >837C

EQU >8300

STATEMENTS

PATTERN DESCRIPTOR TABLE
SAVE LOC FOR VDP R1
SCREEN IMAGE TABLE

COLOR TABLE

SPRITE ATTRIBUTE LIST
SPRITE DESCRIPTOR TABLE

MY WORKSPACE IN HIGH SPEED CPU RAM

DATA >02A0,>06FF,>0336,>030F VDP REGS BIT MAP MODE

6

DATA >0001,>0307,>0FQF,>3FFF,>3F0F,>0F07,>0301,0 SPRITE DESCRIPTOR
DATA >FOEO,>EQCO,>8286,>FEFF,>FE86,>82C0,>EQEQ, >F000
DATA >5080,>8005,>D000

BSS »2F8

TEXT 'THIS IS THE TEXT TO BE DISPLAYED'

EVEN

N CODE *

LWPI WS

* SAVE THE CHAR SET FROM E/A LOADER *

NOTEA

LI RO,>900
LI R1,CHRTAB
LI R2,>2F8
BLWP @VMBR

DASE ADDRESS E/A (START CHAR >20)
READ THE CHAR SET INTO CHRTAB

* SET VDP REGS TO BIT MAP *

CLR RO

LI R1,VDPREG

LI R2,8

VDP REG VALUE
VDP REG POINTER
REGISTERS TO WRITE TO

PROGRAMBITEN 91-6

19

VDPL MOVB *R1+,@WS+l1 MOV TO RO LSB
BLWP @VWTR
AI RO,>0100 NEXT VDP REG
DEC R2
JNE VDPL
MOVB @VDPREG+1,@SVVDP1 BLANK DISABLED
* YOU MUST SAVE A COPY OF VDP R1 AT >83D4 OR KEYSCAN WILL INTERFERE

* FORMAT SCREEN >00->FF THREE TIMES *

LI RO,SIT
CLR R1 BEGIN WITH 0
LI R2,>300 LEN OF SIT
THIRDS BLWP @VSBW
INC RO NEXT LOCATION
AI R1,>0100 WILL WRAP AFTER »FF00
DEC R2
JNE THIRDS

* CLEAR THE PATTERN AREA BLANK AND MAKE COLOR TABLE RED ON WHITE*

BL @CLRVDP CLEAR PATTERN AREA
DATA PDT,>1800,0 DATA FOR SUBROUTINE
BL @CLRVDP RED ON WHITE COLOR AREA

DATA CT,>1800,>9F9F

* ENABLE THE SCREEN SO YOU CAN SEE *

LI RO,>01E3 WRITE >E3 TO VDP REG 1
BLWP @VWTR DOUBLE/MAGNIFIED SPRITES
SWPB RO

MOVE RO,@SVVDP1 SAVE THE VALUE
* PUT THE TEXT ON THE SCREEN -*

BL @DISTEX SUBROUTINE TO PLACE TEXT ON THE SCREEN
DATA >B00O,STRING,32

* SET UP SPRITES *

LI RO,SDTAB SPRITE DESCRIPTOR TABLE ADDRESS

LI R1,SPRITE SPRITE CHARACTER DATA

LI R2,32 DOUBLE SIZE SPRITE

BLWP @VMBW

LI RO,SATAB SPRITE ATTRIBUTE TABLE

LI R1,SALINT INIT DATA FOR SPRITE ATTRIBUTE LIST

LI R2,5 FIVE BYTES TO WRITE

BLWP @VMBW >D0 REQUIRED TO DISABLE REMAINING SPRITES

* THE SPRITE IS ON THE SCREEN. NOW TO MOVE IT.

LOOP LI RO,SATAB+1 X POSITION OF THE SPRITE. Y AT SATAB

BLWP @VSBR READ THE CURRENT X POSITION
SRL R1,8 PUT VALUE IN RIGHT BYTE
DEC R1 SUBTRACT 1 FROM THE X VALUE
JNE MOVE IF X=0 THEN
LI R1,>FF X=>FF

MOVE SLA R1,38 MOVE TO MSBYTE
BLWP @VSBW WRITE THE NEW X POSITION UP

20 PROGRAMBITEN 91-6

LI R2,800
DELAY NOP

DEC R2

JNE DELAY

WASTE TIME

JMP LOOP

DELAY TO SLOW DOWN THE SPEED OF THE SPRITE

THIS IS WHERE YOU COULD PLACE THE REMAINING PROGRAM

* THIS IS A CONTINUOUS LOOP NO PROVISION FOR EXITING GIVEN *

kkhkkkhkhkkhkhkhkhhhkhkkhkhkhkhkhhkhhhhkkhkhkhkkkkkk

* SUBROUTINE TO FILL VDP WITH DATA *

* RT IS R12 *
* DATA PDT,>1800,>0000 *
x (DEST,LEN,VALUE TO FILL) *

kkkhkkhkhkkhkkkhkhkkhkhkhkhkhkhkkkhhkhkhkkhkkkhkkkk

CLRVDP MOV *R11+,R0O DEST
CLRLV MOV *R11+,R3 LEN
CLRV MOV *R11+,R4 VALUE (S)
CLR MOV R11,R12 SAVRTN
SRL R3,1 DIVIDE BY 2
LI R2,2 BYTES OF DATA
LI R1,WS+8 FROM R4
CLRVL BLWP @VMBW
INCT RO NEXT 2 LOCATIONS
DEC R3 DONE?
JNE CLRVL
B *R12 RT
AhkhkEkAKkEAKREAKEAAKEKREA AKX K EA AR KAk kkkk%k
x DISPLAY TEXT SUBROUTINE *
* (LOC, TEXT , LENGTH) *
* >388,MMENU, 9 : *
% % %k %k %k %k % % %k % Kk % vk e e v vk ke do ek e vk ok ok ok ok ok ki ko ke ok
DISTEX MOV *R11+,R0 LOCATION
* LOC=((ROW-1) *256) + { {COLUMN-1) *8)

MOV *R11+,R3
MOV *R11+,R5

ADDRESS OF TEXT TO WRITE
LENGTH OF TEXT STRING

ADD THE BASE ADDRESS OF THE CHAR TABLE

LI R2,8 8 BYTES IN A CHAR DESCRIPTION
PUTDIS MOVB *R3+,R1 BYTE TO WRITE
SRL R1,8 RIGHT JUSTIFY
AT R1,-32 STRIP THE ASCII OFFSET
SLA R1,3 MULTIPLY BY 8 FOR OFFSET
AI R1,CHRTAB
BLWP @VMBW PUT IT ON THE SCREEN
AI RO,8 NEXT SCREEN LOCATION
DEC RS DECREMENT LENGTH COUNTER
JNE PUTDIS ANY MORE TO WRITE?
RT
SLAST END

1 REM SVENSEKA BASIC

2 REM PB 85-4.23

8000 CALL CHAR(91,"002800384
47C4444")

8010 CALL CHAR(92,"0028007C4
444447C")

8020 CALL CHAR(93,"003828384

47C4444")

8030 CALL CHAR(123,"00002800
38447C44")

8040 CALL CHAR(124,"00002800
7C44447C")

8050 CALL CHAR(125,"00003828
38447C44")

PROGRAMBITEN 91-6 21

FAST EXTENDED BASIC!

87/12 -

LOVESTORY

(c) 1989 Lucie Dorais, Ottawa TI-99/4A Users' Group, Canada

My Christmas gift to you is a real
program, one that you can keep and
play with during the holiday
season... a cute game full of
SPRITES. 1In a winter landscape, a
boy and girl walk or run at random
speeds; you can change their direc-
tion and speed by pressing any key.
Sometimes boy chases girl, sometimes
the opposite (she's a woman of the
80's). See what happens when they
meet!

After the now familiar PRE-SCAN
(note that it is put back ON in line
280, long before the end, since a
lot of CALLs and variables are used
only in the last portion of the pro-
gram), the title and landscape are
displayed while Tex lazily redifines
our sprites; we cannot use our fast
DISPLAY AT routine for the landscape
(see Sept. issue), since we want to
use all 32 columns.

All our sprites are four-char. long,
and their numbers are all multiples
of 4. Char. 36 defined in line 140,
takes up only one char., so we can
use it as a single character in the
title (line 150); to use it as a
sprite, we make the following three
char. blank, hence the RPT$ (repe-
tition) of "O"s. 1In line 240, we
encounter a CALL MAGNIFY: this spe-
cial sprite function controls their
gsize. The factor of 4 will make
them double size, i.e. 16 char. (4
ch.*4). Unfortunately, it applies
to all the sprites in the progran,
that is why we made the surprise so
small: when magnified, it will be
only 4 (4*1) char. in size.

Line 250 plants the trees in the
landscape; these are stationery
sprites, so we could have used
standard CALL HCHARs, but can you
imagine the length of the code to
define and display three trees of 16
char. each? Using sprites simplifies
our work. CALL SPRITE is one of
those "multiple parameters" state-
ment: you can use it for as many
sprites as you want, three here; I

will explain below how the sprite
numbers were chosen.

Let's study the left tree:
CALL SPRITE(#9,120,13,89,26,#7,...
S# CH#,CL,PR,PC

Sprite number S# is the number we
assign to the tree on the left, and
CH# is its character number. CL is
the color of the sprite foreground:
since sprites are designed to be
seen over each other, their back-
ground is always transparent, and
does not have to be specified. To
make them move smoothly, XB controls
the sprites pixel by pixel, instead
of row by row and column by column.
Since there are eight pixels in a
row or column, to get the right p-
row and p-column (PR and PC) you
multiply the normal value by eight
and adjust it as you want. Here, p-
row 89 is somewhere "into" normal
row 11, p-column 26 "into" column 4.

The moon is dealt with on line 260,
in a single statement, but we have
two additional parameters after its
position (25 and 180), for the
"velocity" of the sprite. The first
parameter is vertical vel.; since it
is "0", our moon will stay up in the
air. The second one is for horizon-
tal vel.; to make the program more
animated, the moon moves very slowly
towards the left, hence the "-1"
(negative value for left, positive
for right). Change the "-1" to any-
thing up to "-127", or a number
between 1 and 127, and see what
happens!

Boy and girl come on stage as
motionless sprites (line 270), their
velocity randomly determined on line
290; it will be any value from -25
to +24, and each figure gets its own
motion, as in real life. Their
velocity is then passed on to the
CALL MOTION statement in line 300;
it has only two parameters, vertical
("0" in this case: we don't want our
couple to wander around and hide be-
hind the trees!) and horizontal,

22 PROGRAMBITEN 91-6

which are our random values. Each
time you press a key, the CALL KEY
statement in line 330 will take the
program counter back to these lines,
otherwise it will skip them.

Line 310 controls the ligthing of
the trees by two user-defined sub-
routines; I chose that approach so
you can play with the lights if you
wish (no, I had no tutorial intent!
this program is for fun!). And
since we expect some action from our
couple, line 320 checks for the co-
incidence of their sprites. The
"10" is a coincidence factor: the
last parameter, "COIN", will return
a value of -1 when the coincidence
is 10 pixels or less, or of 0 when
there is no coincidence. Note that
this does not work all the time:
this is because the program is not
on that particular line when they
meet... bad luck! If there is a co-
incidence (COIN=-1}, well, read the
name of the sub to find what
happens....

To light up the trees, the SUB ON
puts three more sprites right on top
of the trees (same position), and
the SUB OFF deletes them. Readers
who know about sprites might object
that CALL PATTERNs would have been
simpler: CALL SPRITE the lights
somewhere before the main game
routine, and you define another
sprite, e.g. 96, as a blank one,
i.e. with a foreground color of 1,
transparent: no need to redefine the

VR 7 L #
I m

A word on the SUB KISS: each time
boy meets girl, or vice-versa, we
freeze them in embrace with a motion
of "0,0" and we sneak on them with a
CALL POSITION that gives us the p-
row and p-columnn of the top left
pixel of the boy-sprite (by that
time, the girl is close enough!).

If PC is too far out on the right,
we correct it (there are 256 p-
colunmns, and the surprise sprite
will be six pixels to the right of
boy, so 250 is the highest PC we
want). We now use those values to
call a new sprite slightly right and

e | p— |
1 1

tr |l.mtr

character, since we will never see

it! We would then define SUB ON as

CALL PATTERN(#8,124,#6,124,%1,124),
and SUB OFF as CALL PATTERN(#8,96,

#6,96,#1,96).

BUT: XB does not allow more than
four sprites on the same row at the
same time. We already have a boy, a
girl, a tree and a light cluster, on
or off. When the couple meets, the
heat of its passion causes a fifth
sprite to appear, so one has to dis-
appear. Since the girl's sprite has
the highest number (#5), she loses
her body! Then, as the surprise
sprite moves upwards, the trees
loose part of their branches... Try
it just to see! So, we avoid that
problem by deleting the light-
sprites in the SUB OFF (our heroes'
passion is hot enough to keep the
scene lighted anyway), and put them
back in the SUB ON.

You see now that careful planning is
needed when you number your sprites:
here, we want the couple to pass be-
yond the right tree, but in front of
the middle one. And we want the
surprise to appear between the
couple and the right tree in case
their encounter happens right behind
it. The sprite with the lesser
nunber passes in front of a sprite
with a higher number; I therefore
planned the sprites as follows
("ltr" means left tree, "1l.1ltr"
lights on left tree, and so on):

o =1
5 R
1 boy | ?
|

1

72

- W

2 1
r r o o5

-1 I

i |

I r |
-] . i
below the couple's upper left posi-
tion, then give it a vertical velo-
city of -30 (negative value for up-

ward motion, positive for downward)
and an horizontal one of 0.

A short sound confirms the happy
ending, as the moon quietly con-
tinues to pace the sky. If you
don't change the velocity of a
sprite, it moves forever, until you
stop it with a CALL MOTION (#n,0,0)
or delete it with a CALL DELSPRITE
(see line 290). After the brief
kiss, our couple can resume its

PROGRAMBITEN 91-6 23

course in line 300.

Before I let you play, a last,
COLORful note: if you study the pro-
gram, you may have noted that we
have defined two sprites in one set
(trees+lights, boy+girl). But their
colors, in the CALL SPRITE state-
ments, are not the same: boy is
blue, girl is magenta. Even better,
in line 350, the lights have three
colors (12, 8 and 16), but are all
the same character, i.e. same set!
And the surprise, which was left its
default black in the title, becomes
a vivid red when used as a sprite.
This is because the color of a
sprite is totally independant from
the color of the char. sets. The

100 REM ** LOVE STORY / by L
Dorais / Nov. 1987
120 RANDOMIZE :: GOTO 140 ::

CALL CHAR :: CALL HCHAR ::
CALL SCREEN

130 CALL COLOR :: CALL MAGNI
FY :: !@Pp-

140 CALL CHAR(36,"44AEEFEFEFE
TC3810"&RPTS("0",48))! surpr
ise
150 DISPLAY AT(7,4)ERASE ALL
:"$ LOVE STORY S" :: RANDOMI
ZE .
160 CALL CHAR(48,"FFFFFFFFFF
FFFFFFF" ,136,"FFFFFFFFFFFFFF
FF"):: CALL COLOR(3,15,1,14,
16,1)
170 CALL HCHAR(16,1,136,128)
CALL HCHAR(20,1,48,64)::
CALL HCHAR(22,1,136,96)
180 CALL CHAR(120,"0103070BO
70F170F1F2F1F3F5F0101010080C
OAOCOEODOEQOFOESFOF8F4")! tre
es
190 CALL CHAR(124,"010001080
0021000042100044000000000000
02000401080002800A004")! 1lig
hts
200 CALL CHAR(104,"030303070
1070F1B33070F1F06060EQECOCOC
OEOB0OEOFOD8CCEOQOFQOF860607070"
)! girl
210 CALL CHAR(108,"030303030
1070F1B3303070706060E0ECOCOC
OCO80EOFOD8CCCOEQEQ60607070"
) ! boy
220 CALL CHAR(1l6,"030F1F070
3010103070F0300031F0F03COFOF
8FCFCO9CBEFEFEBE3C7CFCF8F0OCO"
)! moon
230 REM

VDP RAM keeps that informatiom in
two distinct areas: sprite color is
part of the SPRITE ATTRIBUTE TABLE,
while character/set colors are kept
in the COLOR TABLE.

TO DESIGN SPRITES, you can use any
good Sprite Definition program, such
as Compute!'s SUPERFONT, or you can
use a program which has a ready-to-
use collection of sprites. Since I
am lazy, this is exactly what I have
done: tree (PINE), MOON and GIRL
come straight from SPRITE BUILDER
program, and boy is just its FARMER
without a hat. Good news: SPRITE
BUILDER is freeware, and part of the
Ottawa Users' Group Library!

240 DISPLAY AT(7,4):"" :: CA
LL SCREEN(5):: CALL MAGNIFY(
4)

250 CALL SPRITE(#9,120,13,89
,26,#7,120,13,110,106,#2,120
,13,144,200)! put trees

260 CALL SPRITE(#10,116,11,2
5,180,0,-1)! put moon

270 CALL SPRITE(#4,108,5,132
,64,#5,104,14,132,145)! put
couple

280 !@Pp+

290 BV=(RND*50)-25 :: GV=(RN
D*50)-25 ! welocity

300 CALL MOTION(#4,0,BV,#5,0
,GV)! move couple

310 CALL ON :: CALL OFF ! 1i

ght trees

320 CALL COINC (#4,#5,10,COIN
):: IF COIN=-1 THEN CALL KIS
S :: GOTO 300

330 CALL KEY(0,K,S):: IF S=0
THEN 310 ELSE 290 ! press a
ny key

340 REM

350 SUB ON :: CALL SPRITE(#8
.124,12,89,26,#6,124,8,110,1
06,#1,124,16,144,200) :: SUBE

ND

360 SUB OFF :: CALL DELSPRIT
E(#8,#6,#1):: SUBEND
370 SUB KISS :: CALL MOTION(

#4,0,0,%#5,0,0):: CALL POSITI
ON (#4,PR,PC):: IF PC>250 THE
N PC=250

380 CALL SPRITE(#3,36,9,PR+6
,PC+6,-30,0):: CALL SOUND(30

0,1900,0)

390 FOR DEL=1 TO 300 :: NEXT
DEL :: CALL DELSPRITE(#3)::
SUBEND |

24 PROGRAMBITEN 91-6

TIPS FROM TIGERCUB #45

Copyright 1987

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub
Software to TI-99/4A Users
Groups for promotion.

Here is a versatile
printer utility which will
accept all printer control
codes, print in 1 to 5 col-
umns with choice of column
separation and margin width,
allow alternate margins and
pause at end of page to turn
paper over, and will load
and print a diskfull of
files one after another. It
is set up for the Gemini 10X
and may require modification
for other printers.

100 DIM M$(400) ,FS(50)

110 GOTO 150

120 K,ST,SET,S,P$,P,CL,DWS,S
s$,1$,D$,E$,NC,CW,TC,TA,TX,A
V,Cs,s$,LT,AS$,LSP,LP,RM,OKS,
Q0S8 ,X,FS8(),sL,F,IP,MS(),TS,F
LAG,J,PP,LTS

130 CALL CLEAR :: CALL KEY
CALL COLOR CALL SCREEN

:: CALL SOUND

140 !@ep-

150 CALL CLEAR CALL EKEY (3

K,ST):: ON WARNING NEXT

160 FOR SET=0 TO 14 :: CALL

COLOR(SET,2,8):: NEXT SET ::
CALL SCREEN(5)

170 DISPLAY AT(3,6) :"TIGERCU
B PRINTALL": :TAB(7);"Copyri

ght 1987":TAB(6);"Tigercub S
oftware" !programmed by Jim
Peterson

180 DISPLAY AT(12,1):"May be
distributed without":"restr
iction providing that":"no p
rice or copying fee is":"cha
rged."”

190 DISPLAY AT(18,7):"TURN P
RINTER ON!"

200 DISPLAY AT(20,8) :"PRESS
ANY KEY" :: DISPLAY AT(20,38)
:"press any key" :: CALL KEY
(0,K,S):: IF S=0 THEN 200 EL
SE CALL CLEAR

210 DISPLAY AT(12,1) :"PRINTE

.

R DESIGNATION?" ACCEPT AT
{(14,1)BEEP:P$:: IF POS(PS,"
.LF",1)=0 THEN P$=P$&".LF"

220 ON ERROR 230 :: OPEN #1:
PS,VARIABLE 255 :: ON ERROR
STOP :: PRINT #1:CHRS$(27);"@
" :: CALL CLEAR :: GOTO 240
230 DISPLAY AT(20,1) : "CANNOT
OPEN PRINTER!" RETURN 21
0

240 DISPLAY AT(12,1) :"PRINT
SIZE?": :" (1) PICA":" (2)
ELITE":" (3) CONDENSED"
250 ACCEPT AT(12,13)VALIDATE
("123")SIZE(1):P :: PRINT #1

:CHRS$(27);"B";CHRS(P);

260 !The wvalues 80, 96 and 1
36 in the next line are the

maximum number of pica, elit
e and condensed characters p
er line on Gemini 10X

270 !Change as necessary for
your printer!

280 CL=(P=1)*80+(P=2) *96+ (P=
3)*136 :: CL=ABS(CL)

290 DISPLAY AT(12,1)ERASE AL
L:"DOUBLE-WIDTH? (Y/N) N"
ACCEPT AT(12,21)SIZE(-1)VAL

IDATE("YN")BEEP:DW$:: IF DW
$="Y" THEN PRINT #1:CHRS(27)
s "W";CHRS$(1);::: CL=CL/2

300 DISPLAY AT(12,1)ERASE AL
L:"SUPERSCRIPT? (Y/N) N" ::
ACCEPT AT(12,20)SIZE(-1)VALI
DATE ("YN")BEEP:SS$:: IF SS$
="Y" THEN PRINT #1:CHRS$(27);
"S":CHRS$(0);

310 DISPLAY AT(12,1)ERASE AL
L:"ITALICS? (Y/N) N" :: ACCE
PT AT(12,16)VALIDATE ("YN")SI
ZE(-1)BEEP:I$ IF Ig="Yy" T
HEN PRINT #1:CHRS$(27);"4";
320 DISPLAY AT(12,1)ERASE AL
L:"DOUBLE-STRIKE? (Y/N) Y"

: ACCEPT AT(12,22)VALIDATE("
YN")SIZE(-1)BEEP:D$:: IF DS
="Y" THEN PRINT #1:CHRS$(27);
"G“,'

330 IF P<>3 AND P<>4 THEN DI
SPLAY AT(12,1) : "EMPHASIZED?

(Y/N) Y" :: ACCEPT AT(12,19)
VALIDATE("YN")SIZE(-1)BEEP:E
$:: IF E$="Y" THEN PRINT #1

:CHRS (27);"E";

340 DISPLAY AT(12,1)ERASE AL

L:"NUMBER OF COLUMNS? (1-5)"
:: ACCEPT AT(12,26)VALIDATE
("12345")SIZE(1)BEEP:NC

350 DISPLAY AT(12,1) : "COLUMN

PROGRAMBITEN 91-6 25

WIDTH (NUMBER OF": :"CHARAC
TERS?" :: ACCEPT AT(14,13)VA
LIDATE (DIGIT)BEEP:CW
360 TC=NC*CW :: TA=CL-TC ::
TX=TC+NC*2-2
370 IF TX<=CL THEN 390 :: DI

SPLAY AT(18,1) :STRS(NC)&" co
lumns of "&STRS (CW)&" charac
ters":"plus 2-column spacing
equals”

380 DISPLAY AT(20,1) :STRS(TC
)&" characters; maximum":"av
ailable in print size":"sele

cted is "&STRS(CL)&".":"*x%x
Please reselect****x" :: GOTO
240

390 IF NC=1 THEN 410 :: AV=I

NT(TA/(NC-1)):: DISPLAY AT(1
2,1)ERASE ALL:"COLUMN SEPARA
TION?" :"MINIMUM 2" :"MAXIMUM

"&STRS (AV) &" AVAILABLE ":"2"
400 ACCEPT AT(15,1)VALIDATE (
DIGIT)SIZE(-2)BEEP:CS :: IF

CS<2 OR CS>AV THEN 400 ELSE

S$=RPTS (" ",CS)

410 TA=TA-CS*(NC-1):: IF TA<
2 THEN 450

420 DISPLAY AT(12,1)ERASE AL
L:"LEFT MARGIN WIDTH?": :"MA
XIMUM "&STRS (TA)&" AVAILABLE
" :: ACCEPT AT(12,20)VALIDAT

E(DIGIT)BEEP:LT :: IF LT>TA

THEN 420

430 DISPLAY AT(12,1) :"ALTERN

ATING LEFT/RIGHT": :"MARGIN?
(for pages to be":"later re

produced on both":"sides) (Y
/N) N"

440 ACCEPT AT(16,14)VALIDATE
("YN")SIZE(-1) :AS

450 LSP=12 DISPLAY AT(10,
1):" ":"™ ":"LINES PER PAGE?
GOMM MM m.m o w.w v .. AEERD

T AT(12,17)VALIDATE (DIGIT)SI
ZE(-3) :LP IF LP<70 THEN 4
90

460 DISPLAY AT(12,1):"LINE S
PACING - 72 INCH" :: DISPLAY
AT(11,16):"__ " :: ACCEPT AT
(10,16) VALIDATE (DIGIT)BEEP:L
SP

470 IF LP/(INT(72/LSP))>11.5
THEN DISPLAY AT(20,1):"WON'

T FIT!" :: GOTO 450
480 PRINT #1:CHRS$S(27);"A";CH
RS (LSP) ;

490 RM=TA-LT

500 DISPLAY AT(12,1)ERASE AL
L:STRS(NC)&" columns of":STR
S(CW)&"-character width":"le
ft margin of "&STRS(LT)&" sp
aces"

510 DISPLAY AT(15,1) :STRS(LP
)&" lines per page":"with "&
STRS (LSP)&"/72 line spacing”
520 DISPLAY AT(17,1):STRS$(CS
)&" spaces between columns":
"right margin of "&STR$ (RM)&

" gpaces": :"OK? (Y/N) YY"
530 ACCEPT AT(20,11)VALIDATE
("YN")SIZE(-1)BEEP:0KS$:: IF

OK$="N" THEN 240

540 DISPLAY AT(12,1)ERASE AL
L:"PAUSE AT END OF PAGE? N"
:: ACCEPT AT(12,23)VALIDATE(
"YN")SIZE(-1) : QQS

550 DISPLAY AT(1,1)ERASE ALL
:"INPUT FILENAMES TO BE":"PR

INTED.":"PRESS ENTER WHEN DO
NE n
560 X=X+1 DISPLAY AT(X+3,

1) :"FILENAME? DSK" :: ACCEPT
AT(X+3,14)SIZE(-12)BEEP:F$(

X)

570 IF F$(X)="" THEN X=X-1
: GOTO 600 ELSE F$(X)="DSK"&

F$ (X)

580 ON ERROR 590 :: OPEN #2:

F$(X),INPUT ::: CLOSE #2

GOTO 560

590 ON ERROR STOP :: CALL SO

UND(1000,110,0,-4,0):: DISPL

AY AT(20,1) :"CANNOT OPEN "&F

$(X):: X=X-1 :: RETURN 560

600 SL=1

610 F=F+1 :: IF F>X THEN 700

ON ERROR 620 :: OPEN #2:

F$(F),INPUT :: DISPLAY AT (22
,1) :"READING ";F$(F):: ON ER

ROR STOP :: GOTO 630

620 CALL SOUND(1000,110,0,-4

,0):: DISPLAY AT(20,1):"COUL

D NOT OPEN "&FS$(F):: STOP

630 FOR IP=SL TO LP*NC :: LI

NPUT #2:M$(IP):: IF LEN(MS(I

P))=0 THEN 670 IF NC>1 AN

D POS(M$(IP),CHRS$(13),1)<>0

THEN M$ (IP)=SEGS(M$(IP),1,LE

N(MS$(IP))-1)

640 !CORRECTED VERSION -OMIT

THIS LINE - IT DOES MORE

HARM THAN GOOD!

650 IF LEN(MS$(IP))<=CW THEN

670 :: TS=SEGS(MS(IP),1,CW):

CALL SOUND(1000,110,0,-4,0

}):: DISPLAY AT(12,1) :MS$(IP):;

" OVER";CW;"CHARACTERS":"TRU

NCATED TO ";T$:"OK?"

660 CALL KEY(3,K,S):: IF s=0
THEN 660 ELSE IF K<>89 THEN
STOP ELSE M$ (IP)=T$

670 MS(IP)=M$(IP)&RPTS(" ",C

W-LEN(MS (IP)))

680 IF EOF(2)=1 THEN CLOSE #

26 PROGRAMBITEN 91-6

2 :: SL=IP+1 :: GOTO 610

690 NEXT IP IF EOF(2)=1 T

HEN CLOSE #2 GOTO 720 ELS

E GOTO 720

700 ON ERROR 710 :: FLAG=1 :
FOR J=IP+1 TO NC*LP :: M$(

J)="" :: NEXT J :: GOTO 720

710 STOP

720 PP=PP+1 :: IF PP/2=INT(P

P/2)AND AS="Y" THEN LT$=RPTS

(" ",RM)ELSE LT$=RPTS$(" ",LT

)

730 FOR J=1 TO LP :: ON NC G

OSUB 750,760,770,780,790 ::

NEXT J :: PRINT #1:CHRS(12):

: SL=1 :: IF F>X THEN STOP E

LSE IF QQS$="N" THEN 630

740 DISPLAY AT(24,1)BEEP:"PR

ESS ANY KEY TO CONTINUE" ::

CALL KEY(0,K,S):: IF S=0 THE

N 740 ELSE DISPLAY AT(24,1):

"wo.: GOTO 630

750 PRINT #1:LTS&MS (J)&CHRS (

10) : : RETURN

760 PRINT #1:LTS&MS (J)&SS&MS

(J+LP) &CHRS (10) : : RETURN

770 PRINT #1:LTS&MS (J)&SSEMS

(J+LP) &SS&MS (J+LP*2) &CHRS (10

) :: RETURN

780 PRINT #1:LTS&MS (J)&SS&MS

(J+LP) &S$S&MS (J+LP*2) &SS&MS (J

+LP*3) &CHRS$ (10) : : RETURN

790 PRINT #1:LTS&MS (J)&SS&MS

(J+LP) &SS&MS (J+LP*2) &SS&MS (J

+LP*3) &SS&MS (J+LP*4) &CHRS (10

) :: RETURN

This is an improved
version of the math program
in Tips #36.

100 CALL CLEAR RANDOMIZE
110 B=INT(5*RND+2):: IF B=B2
THEN 110 ELSE B2=B

120 F=INT(5*RND+2):: IF F=F2

THEN 120 ELSE F2=F

130 D=INT(5*RND+2):: IF D=D2
THEN 130 ELSE D2=D

140 X=F*B*D

150 BB=INT{(5*RND+2):: IF BB=
BB2 OR BB=B THEN 150 ELSE BB
2=BB

160 DD=INT(5*RND+2):: IF DD=
DD2 OR DD=D THEN 160 ELSE DD
2=DD

170 F=F*BB*DD

180 DISPLAY AT(3,1)ERASE ALL
:"IF";B;"BOYS CAN CATCH";X;"
FROGS IN";D;"DAYS,"

190 DISPLAY AT(6,1):"HOW MAN
Y FROGS CAN";BB;"BOYS":"CATC
H IN";DD;"DAYS?"

210 ACCEPT AT(7,19):Q

220 IF Q=F THEN DISPLAY AT(9
y1) :"THAT'S RIGHT!" :: GOTO
110

230 DISPLAY AT(9,1):"NO, THA

T'S WRONG."

240 DISPLAY AT(11,1):"IF";B;
"BOYS CAN CATCH";X;"FROGS IN
" ,'.D,'. "DAYS"

250 DISPLAY AT(13,1):"THEN O
NE BOY CAN CATCH";X/B;"FROGS
IN";D;"DAYS"

260 DISPLAY AT(15,1):"AND ON
E BOY CAN CATCH";X/B/D;"FROG
S IN ONE DAY."

270 DISPLAY AT(17,1):"SO, IF
ONE BOY CAN CATCH";X/B/D;"F
ROGS IN ONE DAY,"

280 DISPLAY AT(19,1) :"THEN";

BB; "BOYS CAN CATCH";X/B/D*BB
; "FROGS IN ONE DAY"

290 DISPLAY AT(21,1) :"AND";B
B;"BOYS CAN CATCH";X/B/D*BB*

DD; "FROGS IN";DD;"DAYS."

300 DISPLAY AT(24,1) :"PRESS

ANY KEY" :: CALL KEY(O,K,S):

IF S=0 THEN 300 ELSE 110

Here's an idea for an
unusual title screen -

100 CALL CLEAR :: FOR SET=1
TO 8 :: CALL COLOR(SET,1,1):
: NEXT SET :: CALL CHAR(100,
"o",101,"0")
110 X$(0)’"4043241818244202"
2 X$(1)="4021261818648402"
X5(2)y="2020131C38C80404"
X$(3)="1010101FF8080808"
:: X$(4)="081010907E111020"
120 X$(5)="080808F81F101010"
¥ XS(G)—"D404C8381C132020"
X$(7)="0284641818262140"
130 A$=RPTS$ (CHR$(100) &CHRS (1
01),13):: FOR R=1 TO 24 :: C
=C+1+(C=2) *2 DISPLAY AT(R
,C):AS :: NEXT R
140 CALL VCHAR(1,29,1,168)
150 CALL SCREEN(2):: CALL CO
LOR(9,5,16):: FOR S=1 TO 8
CALL COLOR(S,16,2):: NEXT
S
160 DISPLAY AT(5,5):" TIGERC
UB SOFTWARE ";:: DISPLAY AT(
8,6):" SQUIRMY SCREEN ";
170 FOR J=0 TO 7 :: CALL CHA
R(100,X$(J)):: CALL CHAR(101
,X$(7-J3)):: NEXT J
180 CALL KEY(0,K,S):: IF S=0
THEN 170

MEMORY FULL Jim Peterson u

PROGRAMBITEN 91-6 27

FROM

BASIC TO ASSEMBLY

TEXT 1 MODE

by Bob August, Bug News, USA

Up to now, we have been working in
what is called the Graphics mode.
This gives you 32 columns of print
on the screen (0 to 767 total
characters). This month we will
show you how to use what is called
TEXT mode. This will give you forty
columns of print on the screen (0
to 959 total characters). In Ex-
tended Basic there is not an equi-
valent to 40 columns unless you play
games with the program, so we will
not show you an Extended Basic
example this month.

BASTC DISPL.AY AT
(favorit i repris)

60 REM DISPLAY AT I BASIC
70 REM NITTINIAN 83-1.13

80 CALL CLEAR

90 RAD=3

100 KOL=10

110 Z$="TEXT SOM SKRIVS UT"
120 GOSUB 1000

130 GOTO 130

1000 REM DISPLAY AT I BASIC
1010 FOR Z=1 TO LEN(Z$)

1020 CALL VCHAR(RAD,KOL,ASC(
SEGS$(2$,Z,1)))

1030 KOL=1-KOL* (KOL<>32)
1040 RAD=RAD- (KOL=1)

1050 NEXT 2

1060 RETURN n

KERKKEXAKkhkhkkkkkkkhkkkkk

* BASIC TO ASSEMBLY *

* Lesson Number 8 *
Khkkkhkkkhkkkhkkhkkkkkkkkk

*

DEF START

REF VSBW,VMBW,KSCAN,VWTR
*
WRKSP BSS 32
SAV11 BSS 2

*

GAUGE TEXT '0000000001111111111222222222233333333334"

We used a new utility in our program
this month which is VWTR. This
stands for single byte write to VDP
register. Also a new Mnemonic SWPB
which stands for swap bytes. This
moves the high byte to the low byte
and the low byte to the high byte.
In our program we swap the bytes in
register zero (>01F0 to >F001) and
then move the >F0 to >83D4. To go
to the text mode you only need these
four commands:

LI RO,>01F0
BLWP @VWTR
SWPB RO

MOVB RO,@>83D4

Put this in your program and you are
in text mode. It's as simple as
that. In the text mode you have a
total of 960 screen locations in-
stead of 768 as in graphics mode.
Because of this we had to change our
clear screen routine so we would
clear the entire screen. We added
the gauge of 1 to 40 on the screen
so you could see that you had forty
columns. There are no other changes
in the program. Your Display at and
Key scan routines are the same as we
used before. Next month we will
show you how to put color into you
life.

HAPPY ASSEMBLING!

Entry point of program
Utilities used in program

Workspace buffer
Save return address buffer

40 column gauge

TEXT '1234567890123456789012345678901234567890"

MESAGE TEXT 'This is in text mode and we have forty '
TEXT 'columns on the screen instead of thirty '

Message in
40 colunns

TEXT 'two columns like we have in the graphics'

TEXT 'mode.'

28 PROGRAMBITEN 91-6

QUIT TEXT 'Press the Enter key to quit'
*

EVEN
*

* Start of program

*

START MOV R11,@SAV11
LWPI WRKSP
BL. @CLEAR

*

Put into text form

LI RO,>01F0
BLWP @VWTR
SWPB RO

MOVB RO,@>83D4

BL. @DISPLY

DATA 160,GAUGE, 80

BL @DISPLY

DATA 280,MESAGE,125

BL @DISPLY
DATA 726,QUIT,27

Call Key routine

CLR @>8374

CLR @>837C
KLOOP BLWP @KSCAN

CB @837C,@>20

JEQ KLOOP

MOV @>8375,R0

CI RO,>0D

JNE KLOOP

CLR @>837C

MOV @SAV11,R11

BLWP @0

*

* Clear screen routine
%
CLEAR LI RO,0
CLR R1
LI R2,1
CLOOP BLWP @VSBW
INC RO
CI RO,959
JLE CLOOP
RT

*

* Display at routine

*

DISPLY MOV *R11+,RO
MOV *R11+,R1
MOV *R11+,R2
BLWP @VMBW

RT
*

Make sure we start on even byte

Save return address
Load our workspace
GOSUB CLEAR to clear the screen

Load VDP R1 with >F0

Write if to VDP register

Switch left and right bytes

Store result in »83D4 for key scan

GOSUB to DISPLY routine
Screen location, Text, Length

GOSUB to DISPLY routine
Screen location, Text, Length

GOSUB to DISPLY
Screen location, Text, Length

Clear to zero for CALL KEY(O,K,S)
Clear status to zero
CALL KEY(0,K,S)

Prompt to quit

Check status for key press (may not work ed. note)

If S=0 THEN KLOOP
Move key press to register zero
Compare to 13 or Enter key

If not enter key, GOTO KLOOP
Clear status to zero

Put return address in register 11
Quit (FCTN =)

Load RO with zero (Row 1, Column 1)

Clear Register one

Load R2 with one (Length byte)
Write a space to the screen

Add one to RO

Compare RO to 959 (24 X 40, 0 to 959)

Jump to CLOOP if less then 959

Put screen location in RO
Put Text in R1

Put length of text in R2
Write it to the screen
Return to calling area

* End program with auto start

*
END START

PROGRAMBITEN 91-6

(>0020 is »>0460 ed. note)

29

‘swow TYX3 --:000°S

Butajwo Ip BbutussTh BFTWIX UD uaw ‘uUsapRUNIPW BYSUIAS UIP IQJ
33essTad 23UT NUUE IR UJIOIRPWaH (0861 Ar ueliQq T 8bDfI8AsS T
Se135NpoIjUT 3B f/66-I1 I2wwoy sjuawnijzsul sexal 3bjrul

*I9ABINO BT3Y BIAI I3AQ MTisnw yoso pnlT jwes (aabaeg

91) 3r3exbbigy ‘uopueuwwtoy 1 ‘IIs3eS-DISVE pz ‘yFIswzyae
-5Te334AT3F SI0133TSs £1 Ie3zjejwo DISVE-IL " (ISNV) 23IN3TIS

-ul sSpIepuelsS JRUOTIEN URDTIBWY URIJ PUISBUCTIEMNIJToads pauw
ISTOUMIE3ISSUaIIAQ T Yoso 3T9gTriedwod-IIISY 3IT2Y I - DISvVdE HH
- pv/66-IL T 3bbAqur Ip wos 3jayeadsweaboad errniazexy 3ad

*39yYbT1

-(ouw euusp e(334u3ln 33e IsUWWOY Ia[npowweiboird spueunocy ;3e3]
-InsSa1 Y20 uspuelsppauW eleqiaa eiscnpoid 33e I1QJ weaboad 1
se(33Auln uey 3I9peIIQIPI0 °"PAC Q0Z Ae 3Iajroedey pbbAqui us
Iey uag °“Te3l 3IYSTI=juds IQF uajzsyus 1 sapel3zhuin [1ods %
jyeadg sjusunIjisul sexs] T wos ThboTouyal speaaduear euwes

"Te3 IYSTILJULS IQJ ISYUa US JwWes 2oeJISJUI-(FZ A) ZEZ/SH
(9s1q AddoTJd) SUUTWATHSXS[J 'SIPATINS JIE pPrIWely aeus
us woufr seIsjussaid 3je IsSuO WOS IQUSITTI 23IebrT1Ias3lx

*uzojep TTIT3I seanjsue 367prIlwes uey Iajayuafioajuoxiaelyz
vuepes AL ‘uepts ed jusbuejlsbutaaaride ua yoo (yedsalis
pepSTINy) ,%°T3S Lop, pelTey ps ua pawjayualioxjuoiraels
us PsSYD0 sopesTA euraTnpouweiboad yoo uaojeplidy wojlniQd

*SEpuBRA

-Ue uey Y20 3ISEIUT I Foumerdbord ueuut ‘I9InuTW EHBITTTINS
-3¢ PjURA wexboid 21bup PTA URW S3SYW I93jasseypueq pan
*s93fq ¥ 0f ¢d weaboad ejreysuut uey [npounmrexboad epua ug
‘3UUTW SuIojep T UT SESET TIEYS

uauoTjRWIOIUT 33P Bd PlURA I9AQUDQ UeW 3IFE ueln ‘usuwexboad
opeabel ap TT1T3 bupb{1T3 aeqlapawo uarepueaue 1ab ‘weaboad
apeabeT 3seJ paw IeS3aI1q-WOM 35S ¢ TTT3 ddn aAe xp3isaq us

Yoo Iea wos ‘euralnpouweibord -aajlasseypueq ed speabet
wexboad pow udpPOIOW DPUEBPQSPTI BHITUEA UDP UPIF JueyIcw

bts 12[1T¥S p/66-1L I0J Ia[npouwribord sjusWNIISUI SPXIL

*jT3isoubetp Yoo uOFjIRIISUOWSP ‘3ISuolyIolEpP ‘ITOq

-303F JsuelTIawe ‘Ieys37Ia83JTSs ‘bujurpal Ysisi3y ‘yi3euweab
Yoo butuae3ys ysyabus spuebbgprpunab ‘teds eysybobepad
‘3ebpngsTIgysny ‘gjwouoxajearad :zaynpounreiboid spuel1Q3
¥/66-1I1 pa2u sueuuesSTIF3 sopesta ‘Tunf a:¢ uap epeuddq
wos ‘,MOys SOTUOIIOSTI IBWNSUOD-SN, UBSSRW-obedTyd Td

*jepaoqiuab

-ue3 pd s2aQ3In wos Jebujusjaue viu uepas sab apuedqQrizog
TUSWIARYSPTTY §d Jsumuoy JIeqrapawo WOsS BUISUOTIHNIISUT
el1QF yoo Tnpouneaboxd peysuq uy ebbnid 33e I ‘weab

-oad 339 eiQy 33 IQF SAQYSq Wos ITIV °3I23Toedey suzojep
Ae UaTap 9I1IQ3s ‘Yoo ‘Ia3aybrilow apuejz3zejwo s:p/66-IL
el334u3in uefiQq upaz uepax uey U3 Yoo Iep °“Tayua 33ayolw
urojepwsy ae usbutupupaue 171q ‘ZaTnpowzepatarey T opeaber
wexboxd psw YTUYS3 EYTUN SIUSWNIISUI SEXI] SILA HOBL

AL IDTT2 Io3jjuou

ITA-3IBAS TIJTeA I[P ‘bupbutoopia JSIN Paw AL-BIpjy
I911® aojTuowbipy ud TTT3 serddoy 33e ppasaAe JIp SIPESTA
WOosS UOTsIaA Uag *zojeaauabpnl jwes ~xﬂmmumwumu brpugas
-TTIng ‘DISvVd peyQ3in Hﬁrmuwmux ua aey uag *HOY S33Aq A 92
Yoo ‘JUUTWILPURAUR WYY S93Aq Y 97 ASTIFYSUUT WOS 3IFayua
-spioqiusbuey us Ae Igasaq p/66-IL ° (91EM1JOS @23E31S PTTOS)
InpowiepalATeYy EBYTUN S3USWNIISUI SeX3] T Selbeyl wos
weiboaxd pex us UIAR sapesSTA ‘p/66-I1 Uaburuloalaq 3IILJI
wos ‘uzojepwsy paw SURUWWESTITL ‘I03PPWAY SIULUNIISUT
Sexal, uobueb e3saQF I1QF sopesTa Tun(2:f uap uabepugs

dOLVAW3IH
YVYYIONAOYINT SINIAWMILSNI SVXIL

PROGRAMBITEN 91-6

30

