Putting it all together
Swedlow TI BITS 32-33 4-6
DSKU refuses to boot FW 6
The 99/4 Home Computer 7-9
Translitterera med XB 9
Basic to Assembly - 7 10-11
I like brain games 12=35
Programs Write Programs 16
Samlingsskiva PB-93 16
FW Program Loader #1 17
Programbiten-Micropendium 17
News and views #1 1.8=19
My Genealogy Program 19-20
TI Sings (kind of) 21
Console as calcutator 21
Tigercub Tips #69 22-24
‘ Disassembler MM/EA/XB 24-27
g;; Air Defence - spel 28-29
= NUMTALK med speech 30

ISSN 0281-1146 T e T Ve L B Y

REDAKTOREN

Det har nu gatt tio ar sedan TI
slutade med hemdatorn TI-99/4A.
Nedldggningen meddelades fredagen
den 28 oktober 1983, av TI-agare
dven kallade den svarta fredagen.

Jag skaffade min 99:a den 15 januari
1983 och expansionsbox den 18 okto-
ber 1983 strax fdére nedldggningen.
Sedan dess har jag skaffat ytter-
ligare tillbehdér och monterat en ny
tystare flakt i expansionsboxen.
Den dr nu full med féljande kort
(slot nummer):

1 - Flex interface

- Myarc RS232/PIO med DIJIT EPROHN
- Horizen 4000, 512 kB + 32 kB EM
- DIJIT AVPC 80 kol 9938, 192 kB
Myarc HFDC med EPROM H1l

- TI Diskkontrollkort

- P-GRAM+ 192 kbytes med klocka

- Horizon RAM-disk 192 kbytes

00 -1 oy N s W
|

Jag har en tom PC/XT-Box med 160 W
(5V-9A, 12V-5A) for de skivenheter
som inte far plats 1 den vanliga
expansionsboxen. Totalt har jag sex
platser fér halvhéjds skivenheter.
TI-kontrollkortet &r anslutet till
tvd stycken Fujitsu DS/SD 180 kbytes
(DSK1-2). Myarc HFDC 4r anslutet
till Seagate ST-125 harddisk 20
Mbytes (WDS1), TEAC DS/DD 360 kbvtes
(DSK5) och tvad Mitsubishi DS/QD 720
kbytes 5,25 tum (DSK7-8).

Jag anvdnder en Philips CM8833
fargmonitor (50/60Hz, 0.42mm, 12
MHz) och en NEC Pinwriter P6
skrivare (24 pinnar). Det finns
dven TI Joystick par och WICO
Joystick samt Speech Synthesizer.
Jag har en Commodore 1352 Amiga
buss-mus och ett modem med 300 V.21,
75/1200 V.23, 300 BELL103.

Kom ihdg ARSMOTET Loérdagen
5 mars 1994 k1.13 hos

Kent Edgardh (08-777 2944)
Albatrossvidgen 46, Haninge
(se dagordning i PB 93-4)

Asgard Software har ny adress och ny
dgare (endast program pa flexskiva):
Harry Thomas Brashear, 2753 Main
St., NEWFANE, NY 14108, USA.

Den tidigare adressen i Woodbridge
gdller endast hdrdvara och moduler.m

Redaktdr: Jan Alexandersson
Medlemsregister: Claes Schibler
Programbankir: Bdrje HAall

Féreningens adress:
Féreningen Programbiten

c/o Schibler

Wahlbergsgatan 9 NB

§-121 38 JOHANNESHOV, Sverige

Postgiro 19 83 00-6
Medlemsavgiften fér 1994 ar 120:-

Datainspektionens licens-nr 82100488

Annonser, insatta av enskild medlen
(ej foretag), som gdller férsidljning
av moduler eller andra tillbehodr 1
enstaka exemplar dr gratis.

Ovriga annonser kostar 200 kr for
hel sida. Foéreningen férbehdller
sig ratten att avbdéja annonser.

For kommersiellt bruk galler detta:
Méngfaldigande av innehdllet i denna
skrift, helt eller delvis dr enligt
lag om upphovsratt av den 30 decem-
ber 1960 férbjudet utan medgivande
av Foreningen Programbiten. Férbudet
gidller varje form av mangfaldigande
genom tryckning, duplicering, sten-
cilering, bandinspelning, diskett-
inspelning etc.

Féreningens tillbehérsférsdljning:
F5ljande tillbehdr finns att kdpa
genom att motsvarande belopp insdtts
pd postgiro 19 83 00-6 (porto ingar)

Anvandartips med Mini Memory 20:-
Nittinian T-tréja 402~
99er mag. 12/82, 1-5,7-9/83(st) 40:-
Nittinian drgdng 1983 502~

Programbiten 84-89 (per Aargang) 50:-

90-93 (per &rgang) 80:-
TI-Forth manual 100:-
Hel diskett ur programbanken(st)30:-

Enstaka program 5:- st + startkost-
nad 15 kr per skiva eller kassett
(1 program=20kr, 3 program=30 kr).
Se listor i PB89-3 och PB90-4.

Artiklar sédndes till redaktdren:
Jan Alexandersson

Springarvdgen 5, 3tr

142 61 TRANGSUND

Tel. 08-771 0569

Ring eller skriv till mig om du
har frégor om program/hdrdvara

2 PROGRAMBITEN 94-1

PUTTING IT ALL TOGETHER
No. 9

by Jim Peterson, Tigercub, USA

The hard part of learning to program is not in learning what the various
commands do - it is learning how to put them together to do what you want them

to do! Key in this little program and run it to see what it does, then study
the explanation of how it does it.

1 !STRAIGHT-LINE CALCULATOR
TINYGRAM by Jim Peterson
Accepts input such as
6+6-11*2+3/4

2 T,F=0 33 CS="#=x/" :: ACCE

PT AT(12,1)ERASE ALL VALIDAT

E (NUMERIC,CS):F$:: L=LEN(FS$

):: FOR J=1 TO L :: XS$=SEGS(

F$,J,1):: P=POS(CS§,XS,1):: I

F P=0 THEN 5

3 IF F=0 THEN T=VAL(SEGS(F$S,

1,J-1)):: F=1 :: A=J+1 :: P2

=P :: GOTO &

4 V=VAL(SEGS(FS$,A,J-R)):: A=

J+1 :: GOSUB 7 :: P2=P

5 NEXT J :: V=VAL(SEGS(FS, R,

255)):: GOSUB 7 :: DISPLAY A

T(12,L+1):"=":STRS(T)

6 DISPLAY AT(24,1):"PRESS AN

Y KEY" :: CALL KEY(O,K,S)::

IF S=0 THEN 6 ELSE 2

7 IF P2=1 THEN T=T+V ELSE IF

P2=2 THEN T=T-V ELSE IF P=3
THEN T=T*V ELSE T=T/V
8 RETURN

the value of P (the position of the math symbol in CS§)

The calculations are done from left to right, not
in the mathematical hierarchy of multiplication
and division first.
The variables T and F are reset to 0 because pro-
gram execution returns here. A string of math
symbols 1s placed in C$. The calculation 1is
accepted into F$, using ERASE ALL to clear the
screen; the VALIDATE will accept only numeric
characters (numerals and decimal point) and the
symbols assigned to C§$. L measures the length of
the string. The J loop examines the characters in
the string, from the first to the last, extract-
ing one character at a time into X$. POS checks
whether that character is the 1lst, 2nd, 3rd or
4th character of the C$ "+-*/" and places that
value in P, or a 0 if it does not match any of
them. In this case, X$ was a numeric character so
execution jumps to NEXT J to continue the loop.
Otherwise, the first math symbol in the string
has been found. F {(a flag variable) still equals
0 so VAL converts the part of F$ from the first
character up to the math symbol into its numeric
form, in T. The flag F is set to 1 so that line
3 will be skipped over from now on. The position
of the first character after the math symbol (the
beginning of the next number) is saved in A and
is saved in P2. The loop

continues, finding the digits of the next number, until another math symbol is
found. F does not eqgual 0 so execution jumps to line 4. The segment of F$
starting from the position saved in A, to J-A (the character preceding the
current math symbol) 1s converted to numeric by VAL and placed in V. The
position to start looking for the next number is again saved in A. The GOSUB
jumps to line 7. Depending on the position in C$§ ("+-%/"), saved in P2, of the
previously found math symbol, the value of this second number, saved in V, is
aded to, subtracted from, multiplied by or divided into the previous number

saved in T,
statement in line 4,

and the new value is saved in T. Execution then RETURNs to the last
to save the value of P

(the location in C$ of the current,

not yet used, math symbol) in P2, and the loop continues.

When the loop is completed,

in line 5,

the value of the final numeric charac-

ters is determined, the GOSUB again uses the value saved in P2 to determine the
final calculation, and the result is printed out. Since the original input was
in row 12, column 1, and the length of the input was saved in L, L+1 places the
"=" directly after it, and converting the value T into a string by using STRS$
causes it to print directly thereafter without an intervening space.

If § (status) in the CALL KEY is 0, it means that no key was pressed, so the
line is repeated; otherwise, execution goes back for another input. u

Tidigare avsnitt av "Putting it all together" har publicerats i Programbiten:
Putting No.5 se PB 90-5.28 och Putting No.8 se PB 92-1.03.]

PROGRAMBITEN 94-1 3

SWEDLOW TI BITS * 32—33 *

by Jim Swedlow, USA

(This article originally appeared in
the User Group of Orange County,
California ROM)

I had occasion to use two features
of TI Writer that were interesting,
so I though I would pass them along.

INCORPORATING INSTANCES

This will be very brief, because
Bill Nelson, Graphs Guru Extro-
dinare, did most of the work. He
designed two instances, which, to-
gether, formed a letterhead. Bill
then used Rodger Merritt's PICTURE
IT to convert them into a TI Writer
compatible file.

The file is filled with trans-
literate (.TL) commands. It
accesses the graphics mode of your
Star Gemini or Epson compatible
printer. I had two problems.

First, the file would not work with
FUNNELWEB. The computer locked up
before printing the first line. A
quick call to Bill and I learned the
fix - go back and use real TI
Writer. Haven't used TI Writer in
ages but I found the cartridge and
disk, changed the printer name to
PIO.CR and every thing worked fine -
except for the second problem.

I wanted to use the letterhead with
TI Writer's mail merge capability.
But I couldn't. The PIO.CR printer
name in the Formatter is fine for
the converted instances, but not for
a text file.

Bill explained a solution that in-
volved saving the file to disk and
then printing it from there. I
opted for a simpler option - two
pass printing.

I ran my paper through the first
time to print the letterhead (using
PIO.CR) and then a second time to
print the text (using PIO.LF). It
worked.

MAIL MERGE
When would you use mail merge?

o You want to write that annual

Christmas letter, but, instead of
photocopying, you want to person-
alize each one.

o You have a business and vou want
to send individualized letters to
your customers (". . ves, right
there in Garden Grove, you can use

-n)-

o You are planning a conference, a
party or a Fest and you want to send
individualized invitations.

What to do? You could write your
letter and then change key informa-
tion for each person. Better yet,
you could use mail merge and let
your computer do the work.

Let's try a Christmas letter.
Perhaps it might run like this:

Dear ,

It has been an exciting year for us.
Junior was accepted to Yale, Mary
had straight A's and Bud stole his
fifteenth truck.

How are things with you
soon and let us know.

? Write

Love,

We have two variables. The first is
the name ({(Annie, Aunt Susie,
Grandpa, etc.). The second is
family members (Bueford; Uncle Sam
and little Quincy; or, perhaps, no
one) .

Here are the steps you must take to
use mail merge.

1. Write your letter. Where you
want to have a variable, identify it
with the Alternative Input symbol
n . The "n" between the asterisks
stands for the field number (*1%,
k2%, *x3% etc.). Your mail merge
ready letter looks like this:

4 PROGRAMBITEN 94-1

.FI;AD
Dear *1%,

It has been an exciting year for us.
Junior was accepted to Yale, Mary
had straight A's and Bud stole his
fifteenth truck.

How are things with you*2*? Write
soon and let us know.

Love,

Note that there is no spaces between
"you", *2* and "?". If Grandpa
lives alone, you will want it to
read "How are things with you?"
Whereas for Annie, you would say
"How are things with vou and
Bueford?".

Remember to include the Fill and
Adjust commands (.FI;AD) and to save
your file before going on to the
next step.

2. Create your value file. Here is
sample:

o1

Grandpa
Annie
“and Bueford

Aunt Susie
, Uncle Sam and little Quincy

O RN ¥ o

Each line must end with a carriage
return. There must be one space
between the field numbers and the
beginning of the text. There must
be one space and then a carriage
return after each asterisk.

If the field is empty (as in the
second field in the first letter)
nothing will print. To make an
empty field, type the field number,
one space and then a carriage
return.

Note the required space (° or SHIFT
6) before "and Bueford". Because
there is no spaces between "you",
2% and "?", we have to tell the
Formatter to insert the leading
space. Otherwise, it will print
"How are things with youand
Bueford?".

Save this file using another name.
For example, if you called your
letter DSK2.LETTER and your could
call your value file DSK2.NAMES
(original, huh?).

3. You are now ready to merge your
two files into individualized
Christmas letters. Load the
Formatter and use DSK2.LETTERS for
the input file name. When you get
to this question:

USE MAILING LIST? N

type Y and press ENTER. When the
Formatter asks you:

MAILING LIST NAME:

type in your file name (in our
example, DSK2.NAMES) and press

ENTER.

TI Writer will print a letter for
each entry in your value file (in
our case, three letters).

There are more tricks with mail
merge but this will get you started.

TI SURVIVAL NET

Do vou subscribe to any TI related
publications? If not, you should.

They are excellent sources for in-
formation on new products, updates,
support and trends in the TI world.

This publication is TI-only:

MICROpendium
PO Box 1343
Round Rock, TX 7868

The only major computer magazine
that still supports the TI is:

Vulcan's Computer Monthly
PO Box 7062

Atlanta, GA 30357-0062
Cost: §15.95 a year

Vulcan's carries Barry Traver's
column. If you subscribe to
Vulcan's, tell them that you are a
TI 99/4A owner and proud of it!

One more to complete the list,
Barry's diskazine, Genial TRAVelER.

PROGRAMBITEN 94-1 5

Every so often you get a disk
(sometimes two!) from Barry that is
filled with wonderful stuff.

Genial Computerware

835 Green Valley Drive
Philadelphia, PA 19128
Cost: 8§36 for six issues

The Bottom Line: If you do not
subscribe to one or more of these,
you are making two fatal errors.
First, you are depriving yourself of
some of the best available TI
support. Second, you are speeding
the demise of the TI survival net.

The people who produce these fine
publications are not getting rich.
They do it because they love the TI.
If you don't let them know that you
are still a TI'er with your check
book, sooner or later they will move
onto greener fields.

BTW: These rates are as of October,
1990 and are, as they say, subject
to change without reason or notice.

A NEWT'ism
Seen on the BBS and attributed to
Cost Compute:

The only difference

between a guru and an

expert is that the guru

reads the manuals.

MORE FROM THE BBS

Kevin McAlleavey of Selkirk, New
York, left this message on the BBS
under the title of "I WANT TO
WHINE!"

(sniff, whimper) . After all
these years, I remain a loyal TI-
ONLY user and am getting VERY de-
pressed watching the last lifeblood
resources for my darling die off.
Yes, I am familiar and fluent in MS
DOS owing to my being forced to deal
with the critter at my job site.
After playing with a 386, and having
toyed with a briefly operational
9640, yes, it's slow as molasses in
a bitter New York winter, but I just
can't bring myself to separate my-
self from my little black and silver
"mamita espanol". I have heard much
whining about the humble yet "mas

fuerte" 99/4A being a dinosaur, but
this darling and I have always been
lovers and I cannot live without
"her". My apologies for my whining
session (sniff), but I don't wanna
see evervone abanden this delight.

Whine on, Kevin!

QUESTION

What have you done recently to
prolong support for the 4A? What
will you do next? Think about 1it.

Enjoy! L

DSKU REFUSES
TO BOOT FW

by Charles Good, Lima Ohio UG, USA

DSKU v4.2 which was distributed by
the Lima User Group as part of its
Funnelweb v4.40 and earlier Funnel-
web v4.31 distribuiton. There is an
item on the main DSKU menu that says
"Load FW". It usually doesn't work.
The reason is that DSKU searches the
drive you specify for a file named
UTIL1, which is what the main
Funnelweb file used to be called.
The main Funnelweb file is now
called FW.

It is easy to modify DSKU to boot
file FW every time you ask DSKU to
"Load FW". Here's how. Use Funnel-
web's DISK REVIEW or other sector
editor to search the third DSKU file
(named either DW or DSKW) for the
ASCII text "UTIL1"™. You will find
"DSK1.UTIL1" Change the UTIL1 to
"FW" and put blank spaces over the
IL1. Then change the screen display
to Hex (CTRL/H if you are using
Funnelweb's DISK REVIEW) and move
the cursor backwards (to the left)
to the first appearence of "0A".
This is at byte »DD in ny file DW.
Change the OA to 07 and write these
changes back to disk (CTRL/W and
then CTRL/A if you are using Funnel-
web's DISK REVIEW). This change
shortens the length of text the
computer expects to find, since
DSK1.FW is shorter than DSK1.UTIL1.
DSKU will now properly boot Funnel-
web when you select "Load FW" from
DSKU's main menu.]

<3 PROGRAMBITEN 94-1

THE 99/4 HOME COMPUTER

by Charles Good, Lima Ohio User Group, USA (Feb 1991)

TI began shipping the 99/4 (copy-
right 1979 on the color bar title
screen) in October 1979. It cost
$1150 bundled with a 13 inch color
monitor (FORTUNE, December 3, 1979,
p.54). Initially you had to take
the monitor and could not purchase
the 99/4 separately, and most pur-
chasers had to pay close to full
price. Bundling was necessary be-
cause the 99/4 console passed but
TIs TV modulator initially failed to
pass FCC lab tests for noninter-
ference with radio and TV broadcast
reception. The modulator emitted
too much RF radiation (BUSINESS
WEEK, March 19, 1979, p.37). How-
ever, at that time the FCC did not
regulate RF radiation from computing
devices not hooked directly to TVs.
So TI got around the FCC regulations
by offering to the public a "com-
plete package". It wasn't until
January 1, 1981 that the FCC began
testing ALL computers likely to be
used in a home environment for TV/
radio broadcast interference (POPU-
LAR COMPUTING, November 1981, p.6).
TI eventually came up with a TV mo-
dulator that would pass FCC tests
and on November 28, 1980 began sell-
ing the console and monitor sepa-
rately. The console's list price
was $650 (BUSINESS WEEK, December 8,
1980, p.28). This was in one
respect actually a price increase,
because the separate prices of the
console and monitor were $250 more
than their previous bundled price.

TI never published any sales data
for the 99/4, but an independent
market research firm estimated that
TI would sell 25000 between its
introduction and the end of 1980
(FORTUNE, June 16, 1980, p.139).
During the summer of 1981 TI quietly
introduced the 99/4A with a list
price of §525. By the time produc-
tion of the 99/4A ceased 1n late
1983 or early 1984 the store price
for a brand new 99/4A was $50, and
over 1 million, perhaps several
million 99/4As had been sold.

DIFFERENCES BETWEEN 99/4 AND 99/4A

The most obvious differences are the
keyboard, the lack of lower case
letters on the "4", and the "4"s
EQUATION CALCULATOR. Most "4"s have
an earphone jack on the front for
private listening, but mine doesn't.
I will discuss most of these obvious
differences in detail. The 4A gets
its "A" from the fact that it has a
9918A video processor, whereas the
99/4 has a 9918 video processor.

The 9918A has bit map mode (Gra-
phic2), which is not found on the
9918 processor. This means that any
software that uses bit map mode will
not run on the 99/4. Other differ-
ences between the 99/4 and 99/4A
(such as the "4"s lack of an XOP
assembly directive) are referenced
in the index of the Editor/Assembler
manual (p.456) under the heading
"Computer differences".

In general, all software written for
the "4" will run on the 4A. Some
complicated routines on the 4A were
required to achieve this compatibi-
lity. The "4" has 256 bytes more
free memory in TI BASIC than the 4A,
so some BASIC software written on a
"4" may not work on an unexpanded
4A. Lots of assembly or GPL soft-
ware written for the 4A will NOT
work on the "4", and there is no
easy way to upgrade a "4" to a 4A.
The Mini Memory module and its line
by line assembler, and the E/A mo-
dule and its editor and assembler
work OK on the "4". A partial list
of "won't work on the 99/4" software
includes TI-Writer, Multiplan,
Funnelweb v4.x, the LINES program
that comes with the Mini Memory mo-
dule, all the Milton Bradley game
modules that were created to accom-
pany the MBX system, Word Invasion,
Parsec, Story Machine, Alpiner,
Dragon Mix, and Word Radar. Most of
these modules and the LINES program
are probably incompatible because
they use bit map mode. There are
probably other reasons for the in-
compatibility of Multiplan, TI-
Writer, and Funnelweb. Even the
non-editor parts of Funnelweb won't

PROGRAMBITEN 94-1 g f

work on the "4". When you boot
Funnelweb into the "4" using the
extended basic module, the title
screen shows blanks where there
should be lower case letters. You
can then go to Funnelweb's extended
basic user list, but here the "4"
locks up. You can't boot any soft-
ware from the XB user list.

THE KLUDGY 99/4 KEYBOARD

After playing around with my "4" for
a couple of months, I am forced to
agree with the statement made in an
accompanying FORTUNE magazine
article. The 99/4 1is a real dog,
mainly because of its keyboard.

There are 41 "chicklet" style keys,
each slightly contoured and shaped
like a narrow rectangle. The 4A
keyboard has 48 keys. Although each
99/4 key depresses separately, the
keys are not what experienced users
would call "full travel" There is no
tactile response, no click, before
the keys suddenly bottom out at the
end of their downward travel. Non-
alphanumeric keys include one (and
only one) SHIFT, an ENTER, a SPACE
bar, and a SPACE key immediately to
the left of the "A" key. Alpha keys
always produce upper case letters,
so the SHIFT key 1s not used as
often as it 1s on the 99/4A. There
is no ALPHA LOCK, FCTN, or CTRL keys
on the "4". The "4"s SPACE key and
bar do exactly the same thing, leave
a blank space. I can see no reason
at all for this space KEY, in addi-
tion to the normally positioned
space bar. There are ASCII charac-
ters built into the 99/4 consocle
that are not implemented on 1its
limited keyboard, yet there is this
stupid extra space key.

Touch typing on the 99/4 is diffi-
cult. The keys are spread apart the
same distance as on the familiar
99/4R keyboard, so it is possible to
get all your fingers at once onto
the keys. But the small vertical
size of the keys and their lack of
tactile feel makes touch typing
difficult. The small size and mini-
mal contour of the "4"s keys makes
it difficult for a touch typist to
find by feel and seat his or her
fingers in the center of the desired

keys as the fingers move blindly a-
round the keyboard. The fully con-
toured much larger keys of the 4A
(larger because there is less space
between keys) makes touch typing
much easier. A special problem to
experienced touch typists is the
lack of any key to the right of the
"L". This means there is no "home"
key for the little finger of the
right hand to touch, and this will
drive most touch typists crazy.
Frequently, when I try to type on my
"4" I end up accidently moving my
fingers over one key to the left on
the home key row so that all ten
fingers have something to touch. My
left hand pinky finger is then on
the useless SPACE key instead of on
the "A" where it should be. Then I
type rtow fevfw. TI recognized this
problem. The only application soft-
ware written for the 99/A that 1is
likely to require touch typing, the
Terminal Emulator II, has a keyboard
overlay with a raised area creating
a fake key for the right hand's
little finger.

TI provided a series of overlays
specifically for use with the 99/4
and not usable with the 4A. Some
overlays were packaged with the "4"
and others were available with
specific command modules. Because
of the narrow vertical size of each
key there is enough room between
rows of keys on the "4" to display a
text prompt immediately above ANY
key, not just above the numeric keys
as is the case with the 4A. The
overlays have text prompts for spe-
cial keypresses, and cover the en-
tire "4" keyboard, with the keys
sticking up through holes in the
overlay. Special keypress usually
involve using the SHIFT key in com-
bination with a letter key. One
overlay packaged with the "4" shows
the editing keys used in BASIC.
SHIFT/Q=quit. SHIFT/W=begin.
SHIFT/ESDX= arrows. SHIFT/R=redo.
SHIFT/T=erase. SHIFT/A=aid.
SHIFT/F=delete. SHIFT/G=insert.
SHIFT/Z=back. SHIFT/C=clear.
SHIFT/V=proceed. There is nothing
intuitive about some of these key-
presses (why not SHIFT/B instead of
/Z for back), so the overlay is re-
ally needed. Another overlay pack-
aged with the "4" shows the split
keyboard keys that can be used with

3 PROGRAMBITEN 94-1

some games to simulate the 8 posi-
tions of joysticks #1 and #2. 1In
addition to the overlays packaged
with the computer, I have seen over-
lays designed for use with the
following command modules: Terminal
emulator I, Terminal emulator II,
Video graphs (PHM3005), and Video
Chess. There may be other overlays
I havn't seen.

One of the reasons I give the 99/4
my "real dog" rating is the uncon-
trollable multiple repeat of the
keys on my "4"s keyboard. This
makes it almost impossible to do any
useful typing, touch or hunt and
peck, on my "4". Autorepeat of all
keys at rate of 12 characters per
second after a 1 second delay is
listed as a NEW feature of the 99/4A
(99ER MAGARAZINE, Vol 1 #2, July/
August 1981, p.48). Autorepeat is
NOT described in TI literature as a
feature of the "4". On my "4" any
of the keys are likely to repeat
INSTANTLY. When you depress a "4"
key, the keypress registers in the
memory of the computer at a point
about 1/2 way down the travel of the
key. There is no tactile response
that this has occured. The only
thing your finger feels during a
keypress is the sudden stop when the
key bottoms out. If the key hovers
in this "1/2 way down" region you
get mmmultiiiplle displays of theee
keeey on the scrrreennn. Try as I
might, I can't seem to aveid this.
My "4"s keyboard is very sensitive.
Other experienced 4A users who have
tried my "4" all have the same
problem. Having to use backspace
(SHIFT/S) and delete (SHIFT/F) after
every 6-10 keystrokes gets old re-
ally fast. It has been suggested to
me that this problem may be related
to the ageing of my "4". The condi-
tion may not have existed when my
"4" was built. One collector of TI
computer products told me, "I had a
99/4 that did that. I got rid of it
and replaced it with a 99/4 that
still works fine."

ONLY UPPER CASE LETTERS

No keypress on the "4" keyboard will
give ASCII codes 97-122, the lower
case letters. Everything you type
is in upper case, and this means you

only use the SHIFT key in routine
typing to shift the numeric keys and
display !@@#S$% &&*(). The 99/4 uses
a 5x6 pixel grid to display upper
case letters. The 99/4A uses a 5x7
grid to display both upper case and
lower case text. If you load into
the "4" BASIC software written on a
4% that includes lower case text,
the program seems to work OK, but no
lowercase letters are displayed on
screen.

THE EQUATION CALCULATOR

When you PRESS ANY KEY TO CONTINUE
from the color bar powerup screen of
the "4", you get a menu with three
choices. Press 1 for TI BASIC, 2
for EQUATION CALCULATOR, 3 for TITLE
OF COMMAND MODULE. (The rest of this
description, see the full article in
BITS,BYTES&PIXELS Feb 1991).

CONCLUDING REMARKS

When it was released in 1979 the
99/4 was the only consumer device
that could really be called a "Home
Computer". It was the first to
utilize cartridge software. Its
speech synthesis was, and still is,
unequaled. It was easy to use, easy
to program in BASIC, and it was
powerful. 1Its high price was pro-
bably the major reason for its
initially limited sales. 1Its rotten
keyboard didn't help either. I'm
sure glad we now have the 99/4A.

The 4A is much superior to the "4".m

TRANSLITTERERA
MED EXTENDED BASIC
av Jan Alexandersson
Du kan byta t.ex. 64 mot 144 med
CALL TL(TEXTS,64,144) i texten.

9000 SUB TL(TEXTS,CH1,CH2)
9001 ! Transliterates CH1 to
CH2 in TEXTS

9010 CHS=CHRS(CH1)

9020 CH28=CHRS (CH2)

9030 IF POS(TEXTS,CHS$,1)=0 T

HEN 9060

9040 TEXTS$=SEGS (TEXTS,1,P0OS(

TEXTS,CHS,1)-1) &CH2$&SEGS (TE

XT$,POS (TEXTS,CHS,1)+1,80)
9050 GOTO 9030

9060 SUBEND]

PROGRAMBITEN 94-1 9

FROM BASIC TO ASSEMBLY

by Bob August, Bug News, USA

Last month we said we would show you
an easier way to put the window on
the screen and use a lot less code.
We still stayed with ASCII 49
through ASCII 56 to make our window.
However, This month we loaded 64
bytes into Register two instead of 8
bytes at a time. We still start at
the pattern table memory location
»0988 which is the location for the
start of ASCII 49. VWe also used
text to put our window on the screen

150 CALL CHAR(52,'"CcCCCCCCCCC
CCCCCC")! 4 = LEFT SIDE

160 CALL CHAR(53,"3333333333
333333")! 5 = RIGHT SIDE

170 CALL CHAR(54,"CCCCCFCFCO
COFFFF")! 6 = LEFT BOTTOM CO
RNER

180 CALL CHAR(55,"0000FFFFO00
OOFFFF")! 7 = BOTTOM LINE
190 CALL CHAR(56,"3333F3F303
O3FFFF")! 8 = RIGHT BOTTOM C
ORNER

200 GOSUB 260

along with our text. This means we

only write it to the screen one tinme 210 CALL KEY(O0,K,S):: IF S8=0

instead of nine times. We could THEN 210

save more code by not using the BL 220 IF K<¢>13 THEN 210
(GOSUB) to put our window on the 230 STOP

screen. For a little practice, re- 240 CALL CLEAR

write the program clearing the 250 RETURN

screen without a Branch Link and 260 DISPLAY AT(8,1):"1222222

writing to the screen without a 222222222222222222223":"4

Branch Link. Go back to lesson 5ie g

number one 1f you need help. PRESS ENTER KEY TO QUIT 5"
270 DISPLAY AT(11,1):"4

The Extended Basic version of our 5":"677

window program is listed below: T171777171717777T7171TTTTTT77 8™
280 RETURN

100 ! Lesson Number 7 290 END

110 GOSUB 240

120 CALL CHAR(49,"FFFFCOCOCF Both the above program and the
CFCCCC")! 1 = LEFT TOP CORNE assembly program will display a

R window in the middle of the screen
130 CALL CHAR(50,"FFFFOOOOFF with the message in the center of
FF0000")! 2 = TOP LINE the window the same as last month.
140 CALL CHAR(51,"FFFFO303F3 (Lesson 8 see PB 91-6 p.28)
F33333")! 3 = RIGHT TOP CORN

ER HAPPY ASSEMBLING!

kkokkkkokhkkokkokkkkkkkkkkkkkkkkkkkk*xkkkkkkkk
* BASIC TO ASSEMBLY Lesson Number 7 *
dok ok ko vk ok ok ok ok ok ok ok ki ok
*

DEF START
REF VSBW,VMBW,KSCAN

Entry point of program

Utilities used in program

*

WRKSP BSS 32 Workspace buffer

SAV11l BSs 2 Save return address buffer

* ASCII Number:

WINDOW DATA >FFFF,>CO0OCO, >CFCF, >CCCC Left top corner
DATA >FFFF,>0000,>FFFF,>0000 Top line of window
DATA >FFFF,>0303,>F3F3,>3333 Right top corner
DATA >CCCC,>CCCC,>CCCC,>CCcCcC Left side of window
DATA »3333,.>3333.,23333,2>3333 Right side of window
DATA >CCCC,>CFCF,>C0OCO,>FFFF Left bottom corner
DATA >0000,>FFFF,>0000, >FFFF = Bottom line of window
DATA >3333,>F3F3,>0303,>FFFF = Right bottom corner

o n

[T o 2 W 1 I~ N OV U

10 PROGRAMBITEN 94-1

*

MESAGE TEXT
TEXT
TEXT
TEXT
TEXT

EVEN

*

''1222222222222222222222222223 '

"4

5 L}
! 4 PRESS ENTER KEY TO QUIT 5 .
5 '

Y4

RN <% A i i e v i v v v o o B B B B A B A B B A A A B T

* Start of program

*

START MOV
LWPI
BL

*

LI
LT
LI
BLWP

* * ¥

BL

DATA 224 ,MESAGE, 160

Call

CLR
CLR
LI
BLWP
CB
JNE
MOV
Cl1
JNE
CLR
MOV
BLWP

KLOOP

*

R11,@saV1l
WRKSP
@CLEAR

Put window INTO MEMORY

RO,>0988
R1,WINDOW
R2,64
@VMBW

@DISPLY

key routine

@>8374
@>837C
R4,>2000
@KSCAN
@>837C,R4
KLOOP
@>8375,R0
RO, >0D
KLOOP
@>837C
@sav1l,R11
@0

* Clear screen routine

*

CLEAR LI
CLR
BLWP
INC
CI
JLE

RT

CLOOP

*

R1,>2000
RO

@VSBW

RO

RO, 767
CLOOP

* Display at routine

*

DISPLY MOV
MOV
MOV
BLWP
RT

*

¥R19.+ ;R0
*R11+,R1
R 1) 4 R
@VMBW

Make sure we start on even byte

Save return address
Load the workspace
GOSUB CLEAR to Clear the

sSCreen

Load pattern table starting at one

Load window data

8 lines of data times 8 bytes per line

Write it to VDP

Put message and window on the screen

Gosub to display routine

Screen location, Text

, length

Clear to zero for CALL KEY(0,K,S)

Clear status to zero

CALL KEY(O0,K,S)
Check for key press
IF S=0 THEN KLOOP

(Ed.change)

(Ed.change)
(E4d.change)

Move Key press to register zero
Compare to 13 or enter key

If not enter key,
Clear status to zero

goto KLOOP

Put return address in register 11

Quit (FCTN =)

Load Register one with space
Clear Register zero to zero
Write blank space to screen

Add one to register zero
Compare contents to 767
If less then 767,

goto CLOOP
Return to next line of calling area

Put screen location into Register zero
Put messzge into Register one

Put length into Register
Write it to the screen

Return to next line of calling area

* End program with auto start

END

START

PROGRAMBITEN 94-1

two

11

I LIKE BRAIN GAMES!

by Jim Peterson, Tigercub, USA

I don't much care for those fast-action arcade type games
- the dodge-the-pacman, climb-the-ladder, shoot-the-alien
type of thing. My grey-haired reflexes are too slow, and my
8-year old grandson can play rings around me.

And I HATE those adventure games that do nothing but print
out responses that "I don't know how to do that" or "you
can't go thataway". Sounds too much like the SYNTAX ERROR or
BAD VALUE messages that I get when I'm trying to write a
program!

But I do like brain games! - the ones that challenge me to
exercise the grey cells under my grey hair, and give me
plenty of time to do so. I also enjoy programming that type
of game - although they have certainly proven to be the
least popular of anything I have ever done.

The world's premier brain game, of course, is chess. I
can't comment much on that, because I don't know the game -
other than the wild Japanese version, where every piece that
reaches enemy territory can be promoted and every captured
piece can be placed back on the board as your own. I wish
that someone would program that game!

Anyway, Western-style chess is available as an old Texas
Instruments module and as a public domain program translated
by Swiridenko from a version written for some other
computer. From reviews, I understand that neither offers
much of a challenge to an expert, but that either one is a
worthy opponent for an average player.

There are also a couple of TI computer games based on
chess. The Queen Board Game, public domain by D. Decker, is
a real challenge. Hexapawn is an early computer classic from
Ahl's days; the computer starts out by knowing nothing but
learns from its mistakes and, after a few games, becomes
unbeatable!

The blue-collar, redneck equivelant of chess is checkers.
Several versions have been written for the TI, all
apparently from scratch. Their programmers deserve credit
for tackling a complex subject, but any of their games can
be easily beaten by a beginner.

The favorite game of most of Africa, and dating back to
2000 B.C. in the Middle East, is Mancala, also known as
Awari or Mawari in other African languages. It is commonly
played with pebbles placed in holes dug in the dirt, or
gouged out of a slab of wood. Several public domain versions
exist, but the best game by far is the assembly version
called Mancala, copyrighted in 1982 by Aldebaran and
finally released recently by Triton.

Othello is an American board game, based on ancient
Oriental games, in which the object is to capture territory
by placing markers at both ends of a row. Its weakness is
that the player who goes first is at a distinct
disadvantage. Several public domain versions have been
released for the TI, all qguite slow. Dean Clevaland's was
the first. I like the version by Rick Mirus, which has a

1z PROGRAMBITEN 94-1

black board. Nguyen Long in France wrote the version which
is most difficult to beat but it is also very slow,
presumably because the computer researches each move one
step farther.

Go or Gomoku is a simpler game in which the object is to
get 5 markers in a row before your opponent blocks you.
There are several public domain versions, but the best by
far is Links by Curtis Alan Provance, a unique variant with
many features not found elsewhere.

A variant of this game, popular as a toy several years ago
but a really challenging brain game, involves stacking chips
to get four in a row either vertically or diagonally. One of
the best versions was written in the Netherlands.

Tic-Tac-Toe is a child's game, too simple to be called a
brain game, but there are 3-dimensional versions, by various
authors, which are much more challenging. I have been
planning, for years, to write a version in which, if the
first player gets 3 in a row and the second player can
counter with 3 in a row, the game continues.

The 15 Puzzle was originally a pocket game, consisting of
fifteen tiles numbered 1 to 15, randomly arranged in a 4x4
grid, movable but locked within the grid by a frame. The
challenge was to slide the tiles around until the numbers
were in sequence. The promoter sold hundreds of thousands by
offering a large reward to anyone who could solve the puzzle
- but his version was impossible to solve! Some public
domain computer versions are also impossible, because the
programmer has assumed that any random arrangement of
numbers was possible. The Texas Instruments version, sold in
the early days on cassette, correctly started out with a
properly sequenced grid in memory and then scrambled it by a
series of random moves. My version did the same, and also
offered the option of having two players take turns solving
the same puzzle.

Many puzzle games are based on determining, by a series of
educated guesses, the segquence in which the computer has
randomly arranged colored squares or what have you. These
are most frequently called Master Mind, and the most
ambitious was written in assembly, occupying 322 disk
sectors (!), by J-L. Bazanegue in France.

Peg Jump was an old favorite board game in which holes on
a board, in the form of a cross, were filled with pegs. The
object was to jump pegs over each other, removing Jjumped
pegs as in checkers, until only one peg remained in the
center hole. Texas Instruments sold a good version of this
on cassette; Regena wrote another fine version. Many many
vears ago I owned one of these puzzles which was accompanied
by a little booklet showing about 50 "end games." If I could
find that booklet again, it would be fun to program these
end games into the TI or Regena versions.

Games of the "fox and geese" type require moving, or
blocking moves, along certain pathways. The best of these in
the TI world, and very difficult to beat, are Giants and
Dwarfs by Barry Traver and Quintus by Sam Pincus.

Another type requires placing geometric figures within a

PROGRAMBITEN 94-1

1.3

specified area. This is the basis for the L-Game, originally
published in Ahl's Creative Computing by Bill Gardner. I
have never been able to beat it. Of the same type, but much
less difficult, is my Mechanical Aptitude Test, based on the
"broken block" problems of S.A.T. tests and other IQ tests.

Many brain games are based on a mathematical theorem or a
mathematical progression. These are almost impossible to win
until you have puzzled out the secret, and too easy to win
thereafter. An example is Pick Up Sticks, in which you and
the computer take turns picking up 1 to 3 sticks from a pile
of random size, with the player who gets the last stick
being the loser. In my version, after the user has lost
several games, the computer changes the rules to specify

that wheoever gets the last stick is the winner - but the
computer can still win every time! My Can of Worms lets the
user make up all the rules, but he still loses - and Nimbo,

based on the Fibonacci series of numbers, is almost
impossible to win without knowing the secret.

Other mathematical puzzles depend on logical thinking.
Barry Traver wrote a series of three, based on the number
31, which appeared in a recent Genial Traveler. I have
written several, mostly as "tinygrams" or short programs in
my Tips From The Tigercub. Regena recently published in
Micropendium her ingenious Magic Boxes which has several
skil levels ranging from fairly easy to extremely difficult.

Most card games played against the computer, such as
Twenty-One or Blackjack, are based on pure luck rather than
skill or brainwork. There are also various poker games, but
I doubt that anyone has yYyet programmed on the TI - perhaps
not on any computer? - the true odds on a poker hand. Arcade
Action Software has released a cribbage game which has been
reviewed highly, but I have not seen it - nor do I know how
to play the game.

Most solitaire card games are based on pure luck. Quality
99's QS-Solitaire is a beautifully programmed sclitaire game
in assembly, but it is the standard Klondike game in which
no real skill is involved. However, Walt Howe's Chainlink
Solitaire is my favorite of all the brain games ever
programmed for the TI-99/4A. In this version of sclitaire,
all cards are visible, so an intelligent choice of moves is
available - and an option is available to replay the hand by
a different method, if the first try ends in failure. The
later fairware versions of this program, with assembly
links, are very fast. The commercial version, with ribbons
of cards streaming between piles, is something to be seen!

Regena published in Micropendium a Poker Solitaire game
which also lends itself to some intelligent playing.

Word games are still another category which requires some
brainwork - although I would consider the mental exercise to
be minimal in the popular wordsearch puzzles, the object of
which is to find each of a list of words within a grid of
letters. Texas Instruments had this on a cassette. My
version offers a somewhat more challenging option, to find
words of a specified category which are not listed.

Cryptograms are perhaps the most challenging of word
games, but as far as I know, no one has programmed a
diskfull of them for the TI-99/4A. The simplest word game is
Scramble, in which the letters of a word have been

14 PROGRAMBITEN 94-1

reassembled into a random arrangement. I wrote one of those,
as did everyone else, but I also wrote a more challenging
version called Scrambulation, in which each word of a
sentence is scrambled and, optionally, the sequence of words
is also rearranged. I also wrote Squinch, which Jack Sughrue
described as a fiendish game - two words with their letters
randomly intermingled into one. And I wrote Bazoo, in which
you must find a word by guessing 5 letters at a time, and
Changeroo in which you must change one word into another by
changing a letter at a time, making a valid new word each
time.

However, I believe that the most unique word game ever
written for the TI is Karl Romstedt's Superjot, into which
he has programmed every 3-letter word in the English
language. You and the computer each select a word, and try
to guess each other's word - the computer wins more often
than not!

Memory games also qualify as brain games, I believe. The
most popular is Concentration, originally based on
remembering the locations of pairs of cards in a deck
scattered face down. Computer versions, such as my Match A
Patch, normally use graphics patterns rather than cards.

Other memory games are based on remembering a sequence of
numbers or colors, etc. - these are the Simon games. The
most viciously difficult of these is one that I wrote
several years ago called Nervous Breakdown - it challenges
you to simultaneously remember the sequence of three
flashing colors, the highest and lowest of three numbers,
and the highest and lowest of three tones!

Maze games, if played intelligently rather than by
guesswork, are also brain games. The best of these are the
"hallways" type which graphically depict your progress
through the maze in 3-dimensional graphics.

And there are many other types of brain games - the many
versions of the Towers of Hanoi; coin switching puzzles and
coin weighing puzzles and liquid measuring puzzles; the
classic Nim, and the other classic computer puzzles such as
Black Box, Explosion, and others. And I hardly know where to
classify some that I have written, such as Reverso and
Bassackwards - and Preachers, Lawyers and Salesman.

Most of these I have mentioned are in the public domain,
not even fairware. So, if you are tired of trying to zap the
invading aliens, 1f the text adventure has brought you back
to the starting point for the umpteenth time, why not try

doing something intelligent for a change? []
70 REM PRATOR-PROGRAM 1 180 REM LADDAR VSM-ADRESSEN
80 REM av Lars—-Erik Swvahn 190 FOR I=5 TO 1 STEP -1

90 REM PROGRAMBITEN 84-04.14 200 CALL LOAD(SPWR,LOAD+POS (
35 REM XB, MM, EA, SPEECH HEXS,SEGS(KODS,I,1),1))

100 CALL INIT 210 NEXT I

110 HEXS$="123456789ABCDEF" 220 CALL LOAD(SPWR,SPEAK)
120 SPWR=-27648 230 REM PAUS

130 LOAD=64 240 FOR I=1 TO 380

140 SPEAK=80 245 REM loop 110 ger TEXAS
150 RESET=112 250 NEXT I

160 REM HEX KOD I STR-VAR 260 CALL LOAD(SPWR,RESET)
170 KODS="06696" 270 END

PROGRAMBITEN 94-1 15

PROGRAMS WRITE PROGRAMS

by Jim Peterson, Tigercub, USA

Yell, if you have tried your
hand at any MERGE format program
writing, you have already
discovered that it is slow work,
and you need to cram more onto a
line than will fit. When a
little CALL HCHAR(24,12,32,5)
turned into CHRS$(157)&CHRS(200)&
CHRS (5) &"HCHAR"&CHRS (183) &CHRS$ (2
00) &CHRS (2) &"24"&CHRS$ (179) &CHRS (
200) &CHRS (2) &"12"&CHRS (179) &CHRS
(200) &CHRS (2) &"32"&CHRS(179) &CHR
$(200)&CHRS (1) &"5"&CHRS (182) you
gave up? There 1is an easier
way! Using DEF can make the job
so simple that you might decide
to do all your programming in
MERGE format - well no, it's not
quite that easy.

The DEF does slow up program
execution time considerably,
especially when DEFs call each
other, but we can tolerate that
here.

For instance, that complicated
mess of parentheses to squish a
line number can be written Jjust
once as DEF LINESS(X)=CHRS(INT(X
/256)) &CHRS (X-256*INT(X-256)) and
then, whenever you need a line
number, Jjust write LINES(100) or
whatever.

US(X$)=CHR${200}&CHRS{LEN{X$))&XS
Then, to write '"HELLO" just
write US("HELLO") and let the
computer do the work. For a
numeric value in the unquoted
string, use UNS(X)=CHRS(200)&CHRS
(LEN(STRS(X)))&STRS(X), and then
999 becomes UNS(999).
CALL HCHAR can be DEF HCHARS=C

HR$(157) for CALL and, since one
DEF can call another, U$("HCHAR")

and, since it is always followed
by an opening parentheses,
CHRS$(183) - Dbut wait, let's

define that
OPS$=CHRS (183).
Now DEF HCHARS$=CHRS (157)&US ("HCH
AR")&OPS, and you can use HCHARS
for CALL HCHAR(.

Let's also DEF the comma with

open parentheses as

DEF C$=CHR$(179) and the closing
parentheses with DEF
CPS=CHRS$(182). Now that long

HCHAR that had you discouraged
can be abbreviated to CHARS&UNS(
24) &CS&UNS (12) &CS&UNS (32) &CS&UNS
(5) &CPS.

I have written a program of 162
of these DEFs, and another
program to print out a handy
look-up chart of them. It
would take 4 pages to print thenm,

—4

so if you want them just ask me
for a copy. [

The flag token and counting of
characters and all for an
unquoted string can be DEF'd as

SAMLINGSSKIVA PROGBIT—-93

(pris 30 kr inkl. porto till postgiro 19 83 00-6)

PROGBIT-93 Sectors Used = 360 Free = 0 Filecount 30
Filename Size Type Rec P Filename Size Type Rec P
ALPHABLAST 10 Program BX KEYS/XB 4 Program BX
BUG-AL-2/0 5 Dis/Fix 80 LOTTO 22 Program BX
BUG-AL-3/0 5 Dis/Fix 80 MAZE 6 Program BX
BUG-AL-4/0 8 Dis/Fix 80 MOSAIC 24 Program BX
BUG-AL-5/0 4 Dis/Fix 80 MULTICAT 13 Program BX
EDITCHAR 14 Program BX PENSION 5 Program BX
EKONOMI 26 Program BX PG-CLK1 4 Program BX
GLOSOR 30 Program BX PG-CLK2 3 Program BX
GOBLIN 11 Program BX PG-CLK3/0 5 Dis/Fix 80
GRAPH-BITS 3 Program BX PG-CLK3/XB 3 Program BX
HANGMAN 25 Program BX PRINTORD 4 Program BX
HORIZONSXB 26 Program BX STATISTICS 19 Program BX
HORIZON_P 25 Program SUPER-XB/X 11 Program BX
INVENTORY 11 Program BX TYPING 8 Program BX
KEYS/B 4 Program BX XLATE 20*Program BX ®

16 PROGRAMBITEN 94-1

FUNNELWEB PROGRAM LOADER#1

by Charles Good, Lima Ohio User Group, USA

When booting assembly language
PROGRAM software from Funnelweb you
usually use #2 or failing that #3
from the LOADERS or DISK REVIEW
menus. Loader #2 is basically
identical to #5 from the EA module
and boots the character set that is
in the console GROMs. This is the
character set that has those
horrible lower case letters that
look like small upper case letters
and does not have any screen display
for ASCII 1-31 (the TI Writer CTRL/U
control characters).

Loader #1 is almost identical to #2
except that with loader #1 the first
Funnelweb character set is loaded in
memory (file Cl in Funnelweb v4.2,
file CHARAl in earlier versions).
This is a much better looking
character set. Any assembly PROGRAM
that can be loaded from Loader #2
will also probably work with Loader
#1. Using Loader #1 gives much
better looking text with software
that does not have its own built in
character set.

Try this to see the difference
between Loaders #1 and #2. Examine

the text that is displayed within
DM1000 as it comes already con-
figured in Funnelweb. Then run
CONFIGURE and reconfigure DM1000 in
the TI Writer side MENU. Change
DM1000 from a #2 (GPL Pgm) to a #1
(TIW Pgm) load. Reboot Funnelweb,
bring up DM1000, and notice the
difference in the appearance of the
text. On my system the DM1000
screen colors are also changed, but
I like the new screen colors.

Sometimes there is an advantage in
not having ASCII 1-31 visible on the
screen. The visible control charac-
ters create lots of screen clutter.
DISK REVIEW of Funnelweb v4.2, both
40 and 80 column versions, comes
preconfigured as a loader #1, and
you can't change this with
CONFIGURE. If you want to get rid
of control characters in text VIEWed
with DISK REVIEW, you can use
CONFIGURE to configure DISK REVIEW
(file DR) into a second place in the
central menus as a Loader #2 (GPL
Pgm) option. Text VIEWed from this
alternate DISK REVIEW central menu
selection will be free of control
characters.]

PROGRAMBITEN
MICROPENDIUM
av Jan Alexandersson

Micropendium 1 USA har publicerat

flera program och artiklar skrivna

av (eller om) medlemmar i Program-

biten:

Oct 85 p52 NUMTALK, Anders Persson

Dec 85 p08 More on NUMTALK, PB 94-1

Dec 85 pb52 Lots of sound from the
keyboard, Piano PB 84-2

May 87 p26 Adress Programbiten

Mar 88 pl0 A Checksum program that
checks, Lars Thomasson,
PB 87-4

Oct 88 p20 Swedish user offers PRK
BASIC CALLs, PB 88-3

Aug 89 p38 PRK VAR 132, PB 89-3

Apr 91 p27 Quad-density disks and
disk manager perform-
ance, PB 90-1

Jul 92 p20 Newsletter clearinghouse

Aug 92 p29 CRU addresses, PB 90-6

Jun 93 p29 Comparing sector editors
PB 89-4
Oct 93 p26 ALEX/FORMA, PB 93-3]

SPRITEDEMO
(from Bug News, USA)
100 ! SAVE DSK1.SPRITEDEMO
110 CALL CLEAR :: CALL CHAR(
96,"3CTEFFFFFFFFTE3C")
120 J=-1
130 CALL SCREEN(10)
140 CALL SOUND(-2000,330,3)
150 FOR L=1 TO 28 :: CALL SP
RITE (#L,96,5,L*4+20,60,0,L) :
: NEXT L
160 CALL SOUND(-1000,300,3)
170 FOR L=1 TO 28 :: CALL MO
TION (#L,0,L*J):: NEXT L
180 CALL SOUND(-50,440,1)::

J=J*-1

190 Q=Q+1 :: IF Q>5 THEN 200

ELSE 160

200 CALL DELSPRITE (ALL)

210 END |

PROGRAMBITEN 94-1 17

NEWS AND VIEWS #1 — Dec92

by Jim Peterson, Tigercub, USA

Mike Wright's "The Cyc" is now avail-
able. It is an encyclopedia of knowledge
regarding the TI-99/4A and its access—
ories.

The alphabetical list of material has
been drawn from the TI-99/4A Software
Directory, 99/4 International Users
Group catalog, 99'er Magazine, Texas
Instruments Home Computer News, Computer
Shopper, Enthusiast 99 Magazine, and
various other sources. Mike thinks this
is about 40% complete, and plans to add
material from the Smart Programmer,
MICROpendium, Mini Mag 99, Ryte Data
Newsletter, and User Group publications.

In other words, it consists of mater-
ial from sources that went out of exist-
ence several years ago. Since it does
not vyet include MICROpendium, or the
vast amount of material published in
user group newsletters during the past
9 vyears, I doubt that it is even 10%
complete.

The appendices consist of indexes to
some of the above (including MICRO-
pendium up to Vol. 2 No. 8), etc. and
apparently list only a small fraction
of the software that has been written
for the TI.

The Cyc requires an IBM PC or compat-
ible capable of running WordPerfect 5.1
for DOS or Windows. It is available from
CaDD Electronics, 81 Prescott Road, Ray-
mond NH 03077, for $20 including S&H,
on your choice of 5.25 360k, 5.25 1.2Mb,
3.5" 720K or 3.5" 1.44Mb diskettes. The
price includes one upgrade as more
material is added.

Stage 0 of PC99 is now available from
the same source for $49, or for $40 to
the 130 people who responded to the
MICROpendium article. Stages 1 through
4 will each be the same price, if they
are ever developed.

PC99 is software which allows TI-99/4R
programs to be run on an IBM PC. Stage
0 doesn't do much, and does that too
slowly to be practical. The developers
are making no pramises that any further
stages will be completed; they want 1000
TI'ers to show an interest in buying it,
and so far have only 130. They also
admit that it will only run TI programs
on the PC slower than they run on the
TI, until a new faster generation of PCs
becomes available.

Although PC99 wuses software rather
than hardware to emulate the TI-99/4A,
it will require the Soundblaster card
to emulate the TI's speech and music,
and will presumably require some specia-
lized hardware to emulate the TI's
sprites, if that is ever accomplished.

Seems to me that TI programs with
28—column or 40-column text are going
to look strange on a PC's 80-column
screen, unless there is a way for a pro-
grammer to go in and modify them.

Wouldn't it be more practical to write
software that could translate TI XBasic
programs into PC Quick Basic? Or even
translate TI machine language programs
into PC machine language?

An encyclopedia of TI information,
that requires a PC running WordPerfect;
and software to run TI programs on a PC
- 1is this really the beginning of the
end?

In the meantime, Bud Mills is selling
his new SCSI ("Scuzzy") hard and floppy
disk controller card, although the DSR
needed to use it has not been finished.
And Asgard Software is selling their new
Memory Card, which supports from 128K
to 512K of RAM when running programs
designed to make use of the card, if any
such are ever written. And Barry Boone
has completed the buyout of MSDOS, so
Geneve owners may finally have an oper-
ating system for their computer-on-a-
-card in an out-of-production P-box, if
a programmer can be found to finish it.

All of which has caused me to decide
to give the TI world an opportunity to
invest in my Mongolian gold mining ven-
ture. I haven't actually bought the mine
yet, but T will as soon as I get a thou-
sand investors. After that, we will
start digging for gold as soon as the
mining equipment is designed and built.
I want to be totally honest, however,
so I warn you that I may drep the pro-
ject at any moment and leave you high
and dry. In the meantime, don't expect
me to answer phone calls or letters or
keep you posted on the status of your
investment.

Now, what devoted TI'er could resist
an offer like that?

18 PROGRAMBITEN 94-1

Gary Bowser of OPA has released an
open letter to the TI world to refute
rumors that OPA has never made any of
the products they offer, have never
shipped anything by mail, etc. Actually,
the only rumor I had heard was that OPA
was apparently out of business because
they never answered mail or phone calls.

Gary makes the point that the TI world
is such a close-knit community that
having one dissatisfied customer reduces
the total amount of orders, and that he
needs a steady and increasing amount of
orders in order to support himself and
support future development. That is all
very true - but the rumors would never
have started, and the customers would
never have been dissatisfied, if he
would just spend a few pennies and a few
minutes of his time to answer every
inquiry promptly, to notify customers
of any delays and offer refunds if they
are unwilling to wait. And he might get
some orders if he would take out some
ads 1in MICROpendium to let the TI world
lnow what he has to offer. Messages pos-
ted on GENIE are not an effective method

of advertising, and not an acceptable
method of replying to customers.

While on that subject, TI'ers are
quick to complain about poor service
from vendors, but have you ever heard
one praise a vendor for good service?
Bruce Harrison of Harrison Software will
spend hours and hours making his soft-
ware compatible with a customer's sys—
tem, but you'll never Xnow about it
unless you are that customer. Jerry
Price has sometimes been accused of poor
business ethics, but have you ever heard
a complaint about the speed and quality
of Tex—<Comp's service, in all their
years of doing business? There are other
long-established vendors whom no one
ever complains about, and no one ever
praises. If I may blow my own horn just
a bit, in the past 9 years 99% of Tiger-
cub orders have been shipped the day
they were received or the next mailing
day, and complaints have been handled
just as pramptly

But... time to get off the soapbox. m

MY GENEALOGY PROGRAM

by Jim Peterson, Tigercub, USA

Some 20 years ago, my late brother re-
searched our family ancestry and gave
me a copy of his work. I was not too
much interested. It consisted of charts
branching backwards in time, showing
parents, grandparents, etc., much like
a Biblical recitation of "and Jonah
begat Abraham and Abraham begat Noah",
etc., etc., except that in modern genea-
logy the mother who actually bears the
child is at least given second billing.

But last year a gift of some old fam-
ily photos and a visit to some grave-
vards kindled my interest. However, I
wanted to do more than just trace that
forking family tree backwards. I wanted
to know who my grandfather's cousins
were, and who their children and grand-
children were.

I was told that there was no really
good genealogy program for the TI-99/A.
I obtained a sample of a family group
sheet, one of the standard tools used
by genealogists, and began recording
data on it. I soon filled a disk with
D-V80 files of those, which printed out
to a very thick file of pages with a lot

PROGRAMBITEN 94-1

of wasted space.

I thought of trying to write a genea-
logy program, but wasn't sure what I
wanted. BAbout that time, I had an
amazing piece of good luck - I was put
in contact with a distant relative in
Sweden who had researched the family
history back into the 1700s and beyond!

He sent me a 3.5 disk containing his
genealogy program for the PC, and his
files on 1400 family members. Since I
do not own a PC and never intend to, I
ran to Chuck Grimes for help. He
accessed the program's options and
printed out for me a list of all 1400
names, a cross-reference list of all
children, and two cross-reference lists
of marriages, plus several of those fam-
ily tree charts.

About 1000 of those 1400 names were
of the Swedish researcher's father's
relatives and his wife's relatives,
which were of no interest tome, so I
went to work to extract the 400 who were
actually my blood relatives. After abont

19

a week of checking one list against
another, back and forth, I was not too
impressed with the program.

So, again I thought about writing a
genealogy program. I was not interested
in being able to sort data seventeen
ways from Sunday, and I did not care
about printing out those bare-bones fam—
ily trees, but I wanted to be able to
easily find a person by name, and find
a complete record of parents, spouse,
children, biographical data, and sources
of data.

Such a program would be difficult to
write - and unnecessary. I realized that
the best program for my purpose would
be no program at all. The magic of Funn-
elweb and the efficiency of the TI disk
controller was all that I needed.

I booted up Funnelweb, went into the
Editor, set the tab at 39, and typed -

[1] JAMES WARREN PETERSON is the son of
[2]> MORTH EDWIN PETERSON and [3]»
LINNIE LEOMA STEVENS. He was born 20/8
1923 in Pelican Rapids, Otter Tail Coun-
ty, Minnesota. He was married 7/7 1956
in Tokyo, Japan to [4]> MIDORI IMAI.
Their children are [5]> MARIAMN MIEKO
and [6]> ALAN EDWIN.

And that was followed with some bio—
graphical data. I saved it to disk, with
SF to preserve the tab setting, as file-
name 001.

The » after an index number means that
a file exists under that number, with
information about the person. So, I
typed up a similar file about my father
and saved it as 002; and so on. Padding
the number with 0's causes the disk con—
troller to catalog filenames from 001 to
999 in numerical sequence.

Now, if I need to add to a file, T
just load it dinto Funnelweb and go to
work. Since it is in 40-column format,
it is easy to edit on-screen.

The TI disk controller can only handle
127 files on a disk, but many of my 400
names are those of children listed in
their parents's file without enough data
to require a file of their own. When I
do run over the 127 limit, it is easy
to use an additional disk. If I get more
information about such a child, I will
just add a > after his number, and set
up a new record for him.

What about a printout? I could easily
create an .IF file listing all those
filenames in numeric sequence, and print
them all through the Formatter, using
dot commands to change them to 80-column
width. I enclosed the index numbers in
brackets so Icould easily .TL to double-
-strike, emphasize or underline them.

However, I like 40-character 2-column
text, so I wrote a little program to
catalog drives 1 and 2 and print all the
files in sequence in two columns.

Now, how about finding records? I
booted up Funnelweb again, set the tabs
at 5, 35, 50, 55, 60 and 65 and began
entering names in index number sequence
by index number, first name, last name,
file number, father's index number,
mother 's index number and spouse's index
number .

The resulting file was too big for a
simple sorting routine to handle, so I
tried using Peter Hoddie's fairware pro-
gram SORT EXPERIMENT, sorting on the
last name field with a secondary sort
on the first name. I thought that it did
a perfect job, until T found that many
names were missing. The documentation
for SORT EXPERIMENT says it will handle
up to 1000 records or 24k, vhichever
comes first. It fails to mention that
after reading in 24k of data it will be-
gin to sort, without warning you that
it did not read the complete file!

So I went to Dennis Faherty's TI-SORT,
sold by Inscebot. The documentation for
that program is very neatly printed but
difficult for me to understand. I final-
ly figured it out, and produced an index
in alphabetic sequence. I plan to update
it with Funnelweb, inserting lines in
the proper place, so T will not have to
sort it again.

I now have a text-format genealogy
which I can easily and quickly update.
I can print copies of the index and text
to send to relatives who do not have a
computer, and the printouts will be very
easy for them to understand. If any of
them do have a computer and a genealogy
program, it will be very easy for them
to copy the data.

So once again, the best program is the
simplest program that will do the job,
and the simplest of all programs is no
program at all. =

20 PROGRAMBITEN 94-1

TI SINGS

(KIND OF)

by Andy Frueh, Lima Ohio User Group, USA (Jan 1993)

First of all, you'll need Terminal
Emulator 2, and a Speech Synthe-
sizer. Most of you have heard the
TI speak something, and it can be
programmed to speak different voices
digitally (which reminds me, does
anyone know if the TI voice digit-
izer is still available? I have
information on this, and it sounds
great), but did you know that the TI
can sing?

To clear up a few points on TI
speech, you may wonder why the
Synthesizer doesn't say every phrase
in Extended BASIC or the Speech
Editor that it's supposed to. To do
this, put a # sign in front of the
phrase.

You may also wonder why some units
have a flip open 1lid. Well, origin-
ally the speech units were designed
to say only what was in the XB and
Speech cartridges. However, there
were supposed to be some small mo-
dules made that fit into these lids.
If you have such a unit, open the
1id and look inside. You should see
a hole a little more than half way
in. This is were these modules were
to be plugged. Well, the TE2 mo-
dules was introduced before the
modules. Since TE2 offered an un-
limited vocabulary, this project was
disbanded.

Reread the TE2 manual (pp 33-42).
You should go over the section that
deals with using the _, >, and °
symbols. These affect where the
accents come in various words.

To change the actual pitches and
slopes (the length of time the voice
raises or lowers to its peak pitch),
PRINT to the synthesizer using "//xx
yyy" where xx is a value from 0 to
63. 0 is a ghostly whisper, 1 is
the highest pitch, and 63 is the
lowest. vyyy is a number from 0 to
255. The TE2 manual says that best
results are achieved when you multi-
ply the pitch by 3.2 and use that
new value as your slope. The
defaults are 43 and 128.

You can use changes in pitch, slope,
and infliction symbols to have the
computer "sing" notes. I have hear
such examples, but do not have a
list of what pitches, ect. are what
notes. If anyone out there has such
a list, please send it to me so I
can publish it here. However, like
I said, I have heard this "singing",
and it isn't the greatest. Oh, the
notes are accurate, but to me, sing-
ing and EMOTION go hand in hand.

The computer can't replace the
interpretation that singers do. But
it is interesting. =

THE CONSOLE AS CALCULATOR

by Charles Good, Lima Ohio User Group, USA

This idea comes under the "why on
earth didn't I think of this before"
category. Have you ever wanted a
really easy way to use the 99/4A as
a calculator? Perhaps you can't re-
member where you put your pocket
calculator but you always know there
the good o0ld TI is located. The
best way to use the console as a
calculator is from command mode!
Type PRINT followed by a string of
calculations, and then press ENTER.
Thats all there is to it! This
method allows very rapid data entry
and rapid calculation of complex

problems. You might use this method
to balance your checkbook by enter-
ing a series of numbers such as:
PRINT
1254-56.25-452-6.95-77.89-36-45.80
+45+6.32-99.99

530.44

You can also do complex calculations
such as:

PRINT (56*9)/(2.5%6.52)+96-(8/.2+65)
-30.797546

Try it! All you need is a console.
Just turn it on and enter BASIC.]

PROGRAMBITEN 94-1 21

TIPS FROM THE
TIGERCUB #69
Tigercub Software
156 Collingwood Ave.

Columbus, OH 43213, USA

kkkkkkkkk

My three MNuts & Bolts
disks, each containing 100
or more subprograms, have
been reduced to $5.00 each.
I am out of printed documen-
tation so it will be sup-
plied on disk.

My TI-PD library now has
almost 600 disks of fair-
ware (by author's permission
only) and public damain, all
arranged by category and as
full as possible, provided
with loaders by full program
name rather than filename,
Basic programs converted to
XBasic, etc. The price is
just $1.50 per disk(!), post
paid if at least eight are
ordered. TI-PD catalog #5
and the latest supplement is
available for $1 which is
deductible from the first
order.

In Tips #68 I published my
solution to Dr. Ecker's
challenge to alternately
assign X the value of A and
B without using IF...THEN or
any outside help. Computer
Monthly has arrived again
and his solution is better
than mine. Try it with any
two numbers -

100 A=2.765 :: B=-10
110 ¥=A+B-X :: PRINT X :: GO
TO 110

There has been controversy
for years as to whether the
TI's psuedorandom number
generator is truly randam.
Dr. Ecker's "Computer Fun &
Learning" column in Computer
Monthly had a question - if
you randomly generate num-
bers between 0 and 9, how
often will you get the same
number twice in succession?
Three times in succession?
And etc. Since there are 10
numbers to choose from, it
seems to me you would get 2
in a row 10% of the time, 3
in a row 1% of the time, 4

22

in a row .1%...etc. I wrote
this to prove it -

100 RANDOMIZE

110 C=C+1 :: X=INT(RND*10)::
PRINT X;:: IF X=F THEN FL~F
I+l :: CL(FL)=CL(FL)+l :: PR
INT "":FL;"=";CL(FL):"C=";C:
"%&=":CL(FL)/C :: GOTO 110 EL
SE FL=0 :: F=X :: GOTO 110

After 10,000 tries, I had
2 in a row 8.75% of the time
and 3 in a row .83% and 4 in
a row .07% . Does that prove
anything? I don't know.

(Dr. Ecker points out that
those percentages could not
ever quite add up to 100%!)

Here is another of my
XBasic programs to write
assembly source code -

100 DISPLAY AT(2,1)ERASE ALL
:"ASSEMBLY HELP SCREEN WRITE
R":"":" This program will wr
ite the":"source code for an
assembly':"routine which ca
n be linked"
110 DISPLAY AT(7,1) :"from Ex
tended Basic to dis-":"play
any one of several help":"sc
reens at any designated":"ke
y press or input at any":"po
int in a program."
120 DISPLAY AT(12,1):" The o
riginal source code,":"autho
r unknown, was improved":"by
Karl Romstedt and further™:
"modified by Bruce Harrison.
130 DISPLAY AT(20,1):"How ma
ny help screens?" :: ACCEPT
AT(20,24) SIZE(1) VALIDATE (DIG
IT)BEEP:N
140 FOR J=1 TO N :: HS=HS$S&"H
ELP"&STRS(J)&"," :: NEXT J :
: HS=" DEF "“&SEGS (HS,
1,LEN(HS)-1)
150 DATA W¥BW BQU >2024,V
MBR EQU »202C,KSCAN BEQU
»201C,STATUS EQU »337C
160 OPEN #1:"DSK1.HELP/S",OU
TPUT :: PRINT #1:HS :: FOR J
=1 TO 4 :: READ MS :: PRINT
$1:MS :: NEXT J
170 FOR J=1 TO N :: H$="HELP
"&STRS(J) :: PRINT #1:HS&" L

WPL Walis" LI R13,HEL

PS"&STRS (J)

180 TF J<N THEN PRINT #1:"
JMP SAVSCR"

190 NEXT J :: HS=RPTS(" ",7)

PROGRAMBITEN 94-1

200 PRINT #1:"SAVSCR CLR RO
":HS&'LI R1,SAVIT":HS&'LI
R2,768" :HS&"BLWP @VIBR":HS
&'LI R9,NEWSCR'":HS&'MOV R
9,R1":HS&'™MCV R2,R4"
210 PRINT #1:HS&''LI R3,>60
00" :"ADDOFF MOVB *R13+,*R9":
HS&"AB R3,*RH+":HS&'"DEC R
4":H$&"INE ADDOFF" :H$&''BLWP
@VMBW"
220 PRINT #1:"KEYLOO BLWP @K
SCAN" :HS&''BLWP @KSCAN":HS&''C
B @ANYKEY,@STATUS":HS&'JNE
KEYLOO"
230 PRINT #1:"REPL LI Rl
, SAVIT":H$&"BLWP @VMBW'":"RET
N LWPI)83E0":HS&'B @6
A"
240 PRINT #1:"WS BSS 32
":"SAVIT BSS 768" :'"NEWSCR
BSS 768" :"ANYKEY BYTE >20":
HS&"EVEN"
250 DISPLAY AT(3,1)ERASE ALL
:" Enter data just as you":"
want it to appear, in 24":"1
ines. Press Enter for blank"
:"lines."
260 FOR J=1 TO N :: DISPLAY
AT(12,1) :"Ready for screen #
"&STRS(J) :"":"Press any key"
270 CALL KEY(0,K,S):: TF S=0
THEN 270 ELSE CALL CLEAR
280 ACCEPT AT(1,0):M$:: PRI
NT #1:"HELPS"&STRS(J)&" TEXT
' OMEMSSRPTS (" ', 30-LEN(MS))
&ll (A1}
290 FOR K=2 TO 24 :: ACCEPT
AT(K,0) :M$:: PRINT #1:HS&'T
EXT ' "SMSSRPTS(" ", 30-LEN(M
sy
300 NEXT K :: NEXT J :: PRIN
T #1:HS&"END"
310 DISPLAY AT(3,1)ERASE ALL
:" Source code has been writ
-":"ten to DSK1 as HELP/S. T
o":"assemble, insert Editor/
":"Assembler module."
320 DISPLAY AT(7,1):"Insert
Assembler disk in drive 1
.":"Select 2 ASSEMBLER":''Loa
d Assembler? Y":"Source file
name DSK2.HELP/S"
330 DISPLAY AT(12,1):"Object
file name? DSK2.HELP/Q":"Li
st file name? Press Enter":"
Options? R"
340 DISPLAY AT(15,1):"Load t
he resulting object":"file i
nto your program by'':"CALL I
NIT ::":"CALL LOAD('"DSKl.HE
LP/0"") or,"
350 DISPLAY AT(19,1):"much b

etter, imbed it with'":"ALSAV

E or SYSTEX."

360 DISPLAY AT(21,1):"Access
the screens in your progra

m bYN:" CAIJL I_IM(""I‘EE.P].“"}
":"CALL LINK(""HELP2'""), etc
370 CALL KEY(0,K,S):: IF S=0
THEN 370 ELSE CALL CLEAR

For instance, at any point
in a program where keyboard
input is required and user
may not know what to do -
ACCEPT AT(24,1):MS :: IF MS=
"HELP" THEN CALL LINK("HELP1
") and the first help screen
will pop up to give instruc-
tions. Press any key and the
Previous SCreen reappears.

This time I am borrowing
heavily from the TI*MES news
letter of England, which has
also borrowed £from the REC
newsletter.

This one is useless, but

is a remarkable example of
compact complex programming.
It shows that there is an
algorithm for everything.
See if you can figure out
how it works -
100 CALL CLEAR :: FOR A=1 TO
2 :: FOR B=1 TO 4 :: X=2-AB
S(SGN(B-3)):: FOR C=1 TO X :
: PRINT CHRS (84-T*A+5*B-8*X)
;it NEXT C :: NEXT B :: PRIN
T CHR$(A+31):: NEXT A

Another useless one that
is easier to figure out -
100 DISPLAY AT(1,1)ERASE ALL
<"NUMBER OF MONTH(1-12)"

110 ACCEPT AT(2,12)SIZE(2)VA

LIDATE (DIGIT) :A :: IF A<l OR
A12 THEN 110

120 DISPLAY AT(3,1):A;"x 4="
:A*4 :: A=A*4

130 DISPLAY AT(4,1) :A;"+13="

;A+13 :: A=A+13

140 DISPLAY AT(5,1):A;"x 25=
"eA%25 11 RA=A*25

150 DISPLAY AT(6,1):A;"-200=
":A-200 :: A=A-200

160 DISPLAY AT(8,1):"Input d
ate (1-31):" :: ACCEPT AT(8,

19) SIZE(2) VALIDATE (DIGIT) :B
:: IF B<1 OR B>31 THEN 160
170 DISPLAY AT(10,1):A;"+";B
SU="-A+B :: A=A+B

180 DISPLAY AT(11,1):A;"x 2=

"A*X2 :: A=AX2

190 DISPLAY AT(12,1):A;"-40=
"+A-40 :: A=RA-40

200 DISPLAY AT(13,1):A;"x 50
=":A*50 :: A=R*50

210 DISPLAY AT(15,1):"Input
last two digits of year e
g 91:"

220 ACCEPT AT(16,16)SIZE(2)V
ALTIDATE (DIGIT) :B

230 DISPLAY AT(18,1):A;"+";B
;U="-A4B :: A=A+B

240 DISPLAY AT(19,1):A;'-105
00=":A-10500 :: A=A-10500
250 DISPLAY AT(24,1):"ANY KE
Y FOR ANOTHER"

260 CALL KEY(5,A,B)

270 IF B<1 THEN 260

280 RUN

290 END

One for the little ones -
change the string to any-
thing you want.

1 REM SILLY PROG BY S SHAW
MARCH 1991

2 | did you see COMPUTER WAR
S-the film? It is said that

the star, who was required t

o type fast into a computer

3 ! could not type, so a pro

gram just like this one was

used to give a good effect!

4 ! now adjust it how you wi

sh and show your friends how
fast you can type

5 ! at end of text string pr

ogram will just stop with th

is listing but can be modifi
ed to do anything you wish!

6 !

100 AS="This is how a non-ty

pist canproduce information

on screen quickly,witho
ut "

110 AS=AS&'having to look at
what keys are being bashed!
Just bash keys and watch ho

w perfect text appears nom

atter what you press."

120 CALL CLEAR :: PRINT AS:

130 CRLL KEY(5,A,B):: IF B«1
THEN 130

140 C=C+1 :: PRINT SEGS(AS,C
,1);:: IF C=LEN(AS)THEN 160
150 GOTO 130

160 GOTO 160

And a very fast routine to
find prime numbers -

PROGRAMBITEN 94-1

100 ! FIRST 100 PRIMES
—QUICKLY-
110 ! Dr H B Phillps
fran THE REC NEWSLETTER
March 1988 Vol 3 #2
120 DI P(300) ,X(12)
130 A=0 :: B=1 :: D=0.5 :: E
=180
140 ¥=100 :: L=3 :: F=0
150 ! increase M for more- a
1so increase DIMs.
160 PRINT 2;:: C=B :: IF M=B
THEN END
170 L=INT((M/C)*L4F) :: N=L+L
1B
180 FOR I=B TO INT((SQR(N)-B
)*D) :: PP=P(I)
190 IF PP=B THEN 230
200 IF PP=A THEN PP=I+I+B ::
PRINT PP;:: P(I)=PP :: C=C+
B :: IF C=M THEN END
210 IF X(I)=A THEN X(I)=(PP*
PP-B)*D
220 FOR J=X(I)TO L STEP PP :
: P(J)=B :: NEXT J :: X(I)=J
230 NEXT I :: IF F=0 THEN S=
I
240 FOR I=S TO L
250 IF P(I)=A THEN PP=I+I+B
+: PRINT PP;:: P(I)=PP :: C=
C+B :: IF C=M THEN ED
260 NEXT I :: F=(M-C)*L/E ::
S=I+B
270 GOTO 170

And a demonstration of how
the INTERRUPT routine works
independently of whatever
else the computer is doing -

100 REM interrupt demo
110 REM

120 REM MACHINE LANGUAGE
130 RE¥ ROUTINE LOADED AT
140 REM »2600 XB OR E/A WITH
32K

150 REM »>7200 MINI MEM NO 32

K

160 REM

170 CALL INIT

180 X4=9728

190 MM=29184

200 LAD=2M

210 REM TEST XB OR MM?
220 CALL LOAD(XM,170)

230 CALL PEEK (XM,X)

240 TF X=170 THEN 270

250 REM NO 32K MUST BE MM
260 LAD=MM

270 A=LAD

280 REM LOAD M/C

290 CALL CLEAR

23

300 FOR D=540 TO 630 STEP 10
310 CHECK=0

320 FOR N=1 TO 10

330 READ X

340 CALL LORD(A,X)

350 CHECK=CHECK+X

360 A=A+l

370 NEXT N

380 READ X

390 IF CHECK<>X THEN 4390
400 NEXT D

410 REM POKE INTERRUPT

420 REM ROUTINE ADDRESS

430 REM INTO >83C4

440 CALL LOAD(-31804,LAD/256
)

450 REM JUST IDLE AWAY TIME
460 FOR N=1 TO 9940

470 NEXT N

480 STOP

490 PRINT "ERROR IN DATA STA
TEMENT ";D

500 STOP

510 REM EACH DATA STATEMENT
520 REM HAS 10 DATA BYTES
530 REM PLUS A CHECK SUM

540 DATA 192,236,000,092,004
,194,005,131,002,131,987

550 DATA 000,060,026,003,004
,195,006,236,000,094, 624

560 DATA 203,003,000,092,060
,172,000,090,006,002,628

570 DATA 017,015,019,010,006
,002,019,004,002,000,94

580 DATA 002,039,010,083,016
,002,002,000,002,086, 242

590 DATA 096,003,016,007,002
,000,000,119,010,083, 336

600 DATA 016,002,002,000,000
,072,160,003,002,096, 353

610 DATA 064,000,006,192,215
,192,006,192,215,192,1274
620 DATA 016,000,216,044,000
,094,140,000,004,091,605

630 DATA 000,015,000,000,138
.128,000,000,000,000, 281

640 END

Run that, then press FCIN
4. Enter LIST. Enter NEW. To
stop it, enter BYE.

This is an oldie, but well
worth repeating. You can use
it to turn your cassette re-
corder on and off, to add
speech or music from tape to
a running program. With the
proper hardware, you could
write a program to control
almost anything from the
cassette port. If it doesn't

24

work, reverse the polarity
of the remote. Ed Hall wrote
this -

100 CALL INIT

110 CALL LOAD(16368,79,70,70
,32,32,32,36,252)

120 CALL LOAD(16376,79,78,32
,32,32,32,36,244)

130 CALL LOAD(8194,37,4,63,2
40)

140 CALL LOAD(9460,2,12,0,45
.29,0,4,91,2,12,0,45,30,0,4,
91,203,78)

150 PRINT "PRESS":" P Play":
"S Stop"

160 CALL KEY(3,A,B)

170 IF B<1 THEN 160

180 ON POS("PS",CHR${2) ,1)+1
GOTO 160,190, 200)
190 CALL LINK("ON")::
60

200 CALL LINK("CFF"):: GOTO
160

GOTO 1

And that is just about -
MEMORY FULL!
Jim Peterson m

DISASSEMBLER
— FUNNELWEB
100 RH{ e gk ook kok ok ok k ko
110 REM * MM / EA / XB *
120 REM * DISASSEMBLER *
130 RD{ kkkkkkkkhtkhkhkhkhkk
140 REM
150 REM Revised Sept 18/84
160 REM Funnelweb Farm
170 REM
180 DIM S(16),Z(5) ,HXS(15),N
BS (15) ,SPS(3) ,WS(3)
190 REM TITLES
200 GOSUB 920
210 FOR I=1 TO 12
220 CALL COLOR(I,7,1)
230 NEXT I
240 PRINT TAB(9);'MM / EA /
XB":;:TAB(9) ;"DISASSEMBLER":
TAB(9} "usmg BASIC":;
250 PRINT :;:TAB(13); "frcm 4
..TAB(S},"FUM\EZLMEB FARM':;:
260 GOSUB 950
270 LOC=24576
280 GOSUB 5090
290 BMX=1+(M=170)* (N=0)-2* (R
ND> . 8)
300 LOC=3322
310 GOSUB 5120
320 TO=256*MHN
330 LOC=3324

PROGRAMBITEN 94-1

340 GOSUB 5120
350 T1=256*MHN
360 CALL CHAR(128,"OOFE1SFEl
8187E")
370 CALL COLOR(13,11,1)
380 REM USEFUL ARRAYS
390 S(0)=32768
400 HD$="0123456789ABCDEF"
410 FOR I=0 TO 15
420 S(I+1)=s(1)/2
430 HXS(I)=SEGS(HDS$,I+1,1)
440 NBS (I)=SEGS(''00010203101
112132021222330313233",1+2*T
:2)
450 NEXT I
460 SPS (O)"' ¥
470 SPS(1)
480 SPS{Z)*" "
490 SPS$(3)
500 REM RESTART ENTRY
510 GOSUB 920
520 PRINT "PRESS 1 Screen":"
—— 2 COLIST Diskfile":"

3 Printer":" 4 Disk
File":"
530 GOSUB 950
540 OFST=0
550 UNCHR=128
560 GOSUB 5020
570 IF K=15 THEN 560
580 K=K-49
590 IF (K<O)+(K>4)THEN 560
600 IF K=4 THEN 2460
610 F=K
620 G=F>1
630 IF F=0 THEN 760
640 CALL CLEAR
650 PRINT "Enter CHAR (singl
e char)":" to be used instea
d of":" non-printing chars":
" in TEXT mode"
660 GOSUB 5020
670 UNCHR=K
680 IF F=2 T-7N 730
690 PRINT :;:'Disk.file name
Mae.
700 IPUT " ":DEVICES
710 OPEN #F:DEVICES,OUTPUT,D
ISPLAY ,VARIABLE 80

720 GOTO 760

730 PRINT :;:"Printer name ?
740 GOTO 700

750 REM OPTIONS

760 GOSUB 920

770 PRINT "PRESS 1 Disassemb
le Opcode":"—— 2 Display
Hex Data":" 3 Read ASCI
IT

780 PRINT " 4 Read with
offset »60":" 5 BL,BLW
P branches":" 6 REF/DEF

Table"

790 PRINT " T Restart":
" 8 Ind":;:;:

800 GOSUB 950

810 GOSUB 5020

820 K=K-48

830 IF (K«<1)+(K>8)THEN 810
840 CALL CLEAR

850 IF K<6 THEN 870

860 ON K-5 GOTO 1280,2460,24
60

870 GOSUB 1020

880 ON K GOTO 2050,4330,4480
,890,4660

890 OFST=96

900 GOTO 4480

910 REM SCREEN

920 CALL CLEAR

930 CALL SCREEN(7)

940 RETURN

950 CALL SCREEN(15)

960 RETURNM

970 REM JOB DOHNE

980 PRINT :;:

990 INPUT "Press ENTER to co
ntinue:":CONS

1000 GOTO 760

1010 REM INPUT ADDRESS RANGE
1020 CALL CLEAR

1030 PRINT TAB(8);"ADDRESS R

1040 GOSUB 1140

1050 A=DEC

1060 PRINT :" To ?":;:

1070 GOSUB 1140

1080 CALL CLEAR

1090 B=DEC

1100 PRINT " PRESS FCR
ACTION":" ——— — ==

1110 PRINT " SPACE

PAUSE":;:" KEY Co
NTINUE":;:" BACK R
ESTART srassr e

1120 RETURN

1130 REM GET ADDRESS

1140 INPUT " (Hex address) »
":AS

1150 AS=SEGS ("0000"&AS, LEN (A
8)+1,4)

1160 PS=1

1170 FOR I=1 TO 4

1180 PS=PS*POS (HDS, SEGS (AS, I
1),1)

1190 NEXT I

1200 IF PS=0 THEN 1140

1210 DEC=0

1220 FOR I=1 TO 4

1230 DEC=DEC+S (4*I-1)* (POS (H
DS, SEGS(AS,I,1),1)-1)

1240 NEXT I

1250 DEC=2*INT(DEC/2)

1260 RETURN

1270 REM AVATLABLE MEMORY
1280 PRINT " AVAILABLE MEMOR
et Mpiee
1290 O EMX GOTO 1310,1480,1
740

1300 REM EA ADDRESSES

1310 LOC=8228

1320 GOSUB 5090

1330 IF HEX$>"0000" THEN 136
0

1340 PRINT :;:" Not Initiali
zed"

1350 GOTO 980

1360 PRINT " FSTHI »>";HEXS
1370 LOC=8230

1380 GOSUB 5090

1390 PRINT " LSTHI H>";HEXS
1400 LOC=8232

1410 GOSUB 5090

1420 PRINT :" FSTLOW »";HEX
$

1430 1.0C=8234

1440 GOSUB 5090

1450 PRINT " LSTLOW >";HEXS

1460 GOTO 1870

1470 REM MM ADDRESSES

1480 LOC=28672

1490 GOSUB 5090

1500 IF HEX$="A55A" THEN 153
0

1510 PRINT " BASIC FILES IN
M

1520 GOTO 980

1530 Loc=28700

1540 GOSUB 5090

1550 PRINT " FFMM >";HEXS
1560 1LOC=28702

1570 GOSUB 5090

1580 PRINT " LFMM >";HEXS
1590 LOC=28706

1600 GOSUB 5090

1610 PRINT :" FFHM >";HEXS
1620 10C=28708

1630 GOSUB 5090

1640 PRINT " LFHM >";HEXS
1650 Loc=28710

1660 GOSUB 5090

1670 PRINT :" FFLM >";HEXS
1680 LOC=28712

1690 GOSUB 5090

1700 PRINT " LFLM >":HEXS:;

1710 LOC=28702

1720 GOTO 1870

1730 REM XB ADDRESSES

1740 LOC=-31866

1750 GOSUB 5030

1760 PRINT " LFHM »";HEXS
1770 LOC=8194

1780 GOSUB 5090

PROGRAMBITEN 94-1

1790 PRINT :" FFALM >";HEXS
1800 LOC=8196

1810 GOSUB 5090

1820 PRINT " LFALM >";HEXS:

1830 IF HEXS»"0000" THEN 187
0

1840 PRINT :;:" Not Initiali
zed"

1850 GOTO 980

1860 REM REF/DEF TABLE

1870 GOSUB 5090

1880 A=256*MHV

1890 B=16383-16384* (RMX=2)
1900 PRINT " TABLE PROGRAM
ENTRY™: "

L

1910 FOR U=A TO B STEP 8
1920 GOSUB 5060

1930 LOCS=HEXS

1940 CALL PEEK(U,Z(0),Z(1),2
(2),2(3),2(4) ,Z(5) ,4,N)

1950 v&=""

1960 FOR R=0 TO 5

1970 VS=VS&CHRS (Z(R))

1980 NEXT R

1990 GOSUB 5140

2000 PRINT " »":LOCS;" ";V$;
TAB(17) ;"> "SHEXS

2010 GOSUB 4940

2020 NEXT U

2030 GOTO 980

2040 REM DISASSEMBLER

2050 PRINT #F:;:'Disassemble
r output':;:

2060 FOR LOC=A TO B STEP 2
2070 1L=0

2080 U=LOC

2090 GOSUB 5060

2100 LOCS=HEXS

2103 IF F=0 THEN 2110

2105 PRINT LOCS

2110 GOSUB 5090

2120 V=20%256H

2130 VS=HEXS

2140 IF (LOC<14)-(LOCr66) * (L
0C<76)+(LOC=3324) - (LOC>TO-2)
* (LOC(TO+28) - (LOC>T1-2) * (LOC
{T1+24) THEN 2220

2150 IF (RM¥=3)*(LOC>24590) *
(LOC<24656) THEN 2220

2160 IF (EM¥=2)*(LOC>24574)*
(LOC<24666) THEN 2220

2170 NYBS=NMBS (INT (M/16)) &BS
(M-16*INT (M/16)) &BS (INT (N/1
6)) &NBS (N-16*INT (N/16))

2180 REM FORMAT °?

2190 IF V»8191 THEN 2210
2200 O - (V<512)-(V<832)=(V«
1024) - (V<2048) - (v<4096) - (V<8
192)GOTO 2630,3010,3100,3470
,3510,2220

25

2210 O 1-(V¢11264)-(V¢12288

)= (V<14336) - (V<16384) GOTO 25

10,3730,2920,3730,2830

2220 ES="DATA >"'&HEXS

2230 GOTO 2300

2240 REM PRINT OPCODE

2250 sg=""

2260 IF LEN(ES)<19 THEN 2300

2270 V=POS(ES,",".3)

2280 S$=SEGS (ES,V+1,LEN(ES)-

V)

2290 ES=SEGS (ES,1,V)

2300 PRINT #F:LOCS;SPS(F);VS

" ES

2310 IF L~=0 THEN 2330

2320 ON L GOSUB 2380,2400,24

30

2330 GOSUB 4940

2340 IF K=15 THEN 2460

2350 NEXT LOC

2360 GOTO 980

2370 REM PRINT MULTILINES

2380 PRINT #F:LOS(1);SPS(F);

WS (1) ; TAB(28-LEN(SS));S$

2390 RETURN

2400 GOSUB 2380

2410 PRINT #F:LOS(2);SPS(F);

ws(2)

2420 RETURN

2430 PRINT #F:L0O$(3);SPS(F);

W3(3) ;SP$(F) ;CS

2440 RETURN

2450 REM ORDERLY FINISH

2460 IF F=0 THEN 2480

2470 CLOSE #F

2480 IF (K=15)+(K=7)THEN 510

2490 CALL CLEAR

2500 STOP

2510 REM FORMAT I

2520 E$=SEGS$("'SZC SZCBS SB
C CB A AB MOV MOVBSO

C SOCB",1+4* (INT((V-16384) /4

096)),4)

2530 GOSUB 3870

2540 GOSUB 3920

2550 S$=R$

2560 T=VAL (SEGS (NYBS, 3,1))

2570 RS=SEGS (NYBS,4,2)

2580 GOSUB 3890

2590 GOSUB 3920

2600 ES=ES&" "&SS$&","&RS

2610 GOTO 2250

2620 REM FORMAT II

2630 ES=SEGS (""IMPILTILEJEQJH

EJGTINEINCJIOCINOJL JH JOPSBO

SBZTB ", 1+3*INT((V-4096) /256

), 3)& "

2640 DISPS$=SEGS (NYBS,5,4)

2650 DIS=0

2660 FOR I=1 TO 4

2670 DIS=DIS+VAL (SEGS (DISPS,

I,1))*S(7+2*1)

26

2680 NEXT I

2690 IF DIS<128 THEN 2710

2700 DIS=DIS-256

2710 IF SEGS(ES,2,1)="B" THE

N 2810

2720 IF DIS=0 THEN 2790

2730 DS=DIS*2+2

2740 DS$="S"&SEGS ("~ +",2+SG

N(DS) ,1)

2750 U=DIS*2+LOC+2

2760 GOSUB 5060

2770 ES=ES&" >"SHEXS&" ["&DS

S&STRS (ABS (DS)) &"]"

2780 GOTO 2250

2790 ES="NOP"

2800 GOTO 2250

2810 ES=ES&" "&STRS (DIS)

2820 GOTO 2250

2830 REM FORMAT III

2840 ES=SEGS("COC CZC XCR ",

1+4*INT ((V-8192) /1024) ,4)

2850 GOSUB 3870

2860 GOSUB 3920

2870 SS$=RS

2880 R$=SEGS (NYBS,4,2)

2890 GOSUB 3890

2900 ES=ES&" "&SS$S&",R"&STRS (

R)

2910 GOTO 2250

2920 REM FORMAT IV

2930 ES=SEGS ("LDCRSTCR",1+4*

INT((V-12288) /1024) ,4)

2940 RS=SEGS (NYBS,4,2)

2950 GOSUB 3890

2960 C$=STRS(R)

2970 GOSUB 3870

2980 GOSUB 3920

2990 ES=ES&" "&RS&',"&CS

3000 GOTO 2250

3010 REM FORMAT V

3020 ES=SEGS ("SRASRLSLASRC",

143*INT((V-2048) /256) ,3)&" ™

3030 IF V>3071 THEN 2220

3040 GOSUB 3880

3050 V=R

3060 RS=SEGS (NYBS,5,2)

3070 GOSUB 3890

3080 ES=ES&" "&"R"&STRS(V)&"

,"&STRS (R)

3090 GOTO 2250

3100 REM FORMAT VI

3110 ES=SEGS("BLWPB X (L

R MNEG TNV INC INCTDEC DECTBL
SWPBSETOABS ', 1+4*INT ((V-1

024) /64) ,4)

3115 IF V>1919 THEN 2220

3120 GOSUB 3870

3130 GOSUB 3920

3140 IF ESO"BLWP" THEN 3170

3150 AS=SEGS(RS,5,2)

3160 O EMX GOSUB 3200,3250,

3300

PROGRAMBITEN 94-1

3170 ES=ES&" "&RS

3180 GOTO 2250

3190 REM E/A UTILITIES

3200 IF (R$<"@2100")+(R$»"@
»2124") THEN 3230

3210 PS=POS("—__—__04080C1
014181C——002024",A$,1)

3220 GOSUB 3350

3230 RETURN

3240 REM MM UTILITIES

3250 IF (R$<"@>6018")+(R$>"@
»6050"") THEN 3280

3260 PS=P0S(''4044484C1C20242
82C30345018383C",AS, 1)

3270 GOSUB 3350

3280 RETURN

3290 REM XB UTILITIES

3300 IF (RS¢"@>2008")+(R$>"@
»2034") THEN 3330

3310 Ps=P0s("080C1014181C202
4282C3034" ,AS,1)

3320 GOSUB 3350

3330 RETURN

3340 REM NAME UTILITY

3350 IF PS=0 THEN 3410

3360 B$="NUMASGNUMREFSTRASGS

TRREFXMLLIKKSCAN VSBW VMBY
VSBR VMBR VWIR ERR GPL

LNKDSRLNKLOADER'"

3370 B$=SEGS (BS,3*PS-2,6)
3380 R$="@"&BS

3390 IF POS ("XMLLNKDSRLNKGPL

LNK",BS$,1)=0 THEN 3410

3400 GOSUB 3430

3410 RETURN

3420 REM BLWP DATA

3430 I=2

3440 GOSUB 4070

3450 CS$="DATA >"§HEXS

3460 RETURN

3470 REM FORMAT VII

3480 E$=SEGS (" IDLERSETRTWPCK

ONCKOFLREX" , 1+4*INT((V-832) /
32),4)

3485 IF V¢>896 THEN 2220
3490 GOTO 2250

3500 IF V¢>896 THEN 2220
3510 REM FORMAT VIII

3520 T=INT((V-512)/16)

3525 IF (VO>T768)*(V>736) THEN
2220

3530 V=INT(T/2)

3540 IF V<(T/2)THEN 2220
3550 ES=SEGS("LI AI ANDIOR
I CI STWPSTSTLWPILIMI",1+4=
v, 4)

3560 QN 1+V GOTO 3680,3680,3
680, 3680, 3680, 3570, 3570, 3600
, 3640

3570 GOSUB 3830

3580 ES=ES&" R"&STRS (R)

3590 GOTO 2250

3600 GOSUB 4070
3610 GOSUB 4160

3620 ES=ESE" "SHEXS

3630 GOTO 2250

3640 GOSUB 4070

3650 ES=ES&" "&SEGS (HEXS, 4,1
)

3660 WS (2)=""

3670 GOTO 2250

3680 GOSUB 3880

3690 GOSUB 4070

3700 GOSUB 4160

3710 ES=ES&" R"&STRS (R)&","&
HEXS

3720 GUTO 2250

3730 REM FORMAT IX

3740 ES=SEGS("KOP __ ... WP
Y DIV ", 1+4*INT ((V-11264) /10
24) ,4)

3750 GOSUB 3870

3760 GOSUB 3920

3770 S§=R$

3780 R$=SEGS (NYBS, 4, 2)

3790 GOSUB 3890

3800 IF ESO"XOP " THEN 3830
3810 D$=STRS (R)

3820 GOTO 3840

3830 D$="R"&STRS (R)

3840 ES=ES&" "&S$&", "D
3850 GOTO 2250

3860 REM REGISTER #

3870 T=VAL (SEGS (NYBS,6,1))
3880 R$=SEGS (NYBS, 7, 2)

3890 R=4*VAL(SEGS (RS, 1,1))+V
AL (SBG$ (RS, 2,1))

3900 RETURN

3910 REM T-FIELD

3920 ON 1+T GOTO 3930,3950,3
990,3970

3930 R$="R"&STRS (R)

3940 RETURN

3950 RS="*R"&STRS (R)

3960 RETURN

3970 R$="*R"&STRS (R)&"+"
3980 RETURN

3990 GOSUB 4070

4000 GOSUB 4160

4010 IF R THEN 4040

4020 R$="€"SHEXS

4030 RETURN

4040 R$="0'"'SHEXS&" (R"&STRS (R
&)

4050 RETURN

4060 REM NEXT WORD

4070 LOC=LOC#2

4080 L1+

4090 U=LoC

4100 GOSUB 5060

4110 10§ (L) =HEXS

4120 GOSUB 5090

4130 W$ (L) =HEXS

4140 RETURN

4150 REM DEFINED ADDRESSES

4160 PDS=""

4170 PS=POS("8300_834A 335C_

836E_837C_83E0_8400_8800_880

2_8C00_8C02_9000_9400_9800_9

802_9C00_9C02" ,HEXS, 1)

4180 IF PS>0 THEN 4220

4190 GOSUB 4280

4200 HEXS="">"'$HEXS

4210 RETURN

4220 PDS=SEGS("PAD FAC ARG
STACKGPLSTGPLWSSCUNDVDPRDV

DPSTVDPWDVDPWASPCHRSPCHWGRMR

DGRMRAGRMWDGRMWA"', PS, 5)

4230 IF HEXS$»"835C" THEN 425

0

4240 PDS=SEGS(PDS,1,3)

4250 HEXS$=PD$

4260 RETURN

4270 REM LEADING ZEROS

4280 IF (SEGS(HEXS,1,1)>"0")

+(LEN (HEX$)=1) THEN 4310

4290 HEXS=SEGS (HEXS,2,LEN (HE

X$)-1)

4300 GOTO 4280

4310 RETURN

4320 REM DISPLAY DATA

4330 FOR U=A TO B STEP 8-8%G

4340 GOSUB 5060

4350 PRINT #F:HEXS;TAB (5-G*6

):

4360 IF F<¢2 THEN 4380

4370 PRINT #F:"DATA ";

4380 FOR LOC=U TO TH6-G*8 ST

EP 2

4390 GOSUB 5090

4400 PRINT #F:" »";HEXS;

4410 NEXT LOC

4420 PRINT #F:

4430 GOSUB 4940

4440 TF K=15 THEN 2460

4450 NEXT U

4460 GOTO 980

4470 REM DISPLAY TEXT

4480 FOR U=R TO B STEP 16-G*

40

4490 GOSUB 5060

4500 PRINT #F:TAB(1-G) ;HEXS;

TAB (6-G*2) ; "TEXT '";

4510 FOR LOC=U TO H15-G*40

4520 GOSUB 5090

4530 M=M-OFST

4540 IF (Mc127)+(M>31)=-2 TH

EN 4560

4550 M=UNCHR

4560 PRINT #F:CHRS(M);

4570 IF LOC=B THEN 4630

4580 NEXT LOC

4590 PRINT #F:"'"

4600 GOSUB 4940

4610 IF K=15 THEN 2460

4620 NEXT U

PROGRAMBITEN 94-1

4630 PRINT #F:"'"
4640 GOTO 980
4650 REM BL,BLWP TARGETS
4660 PRINT #F:"Locn Inst Trg
t Wksp Pgct":"_

!

4670 FOR U=A TO B STEP 2
4680 1LOC=U

4690 GOSUB 5090

4700 PS=POS("0420_06A0" HEXS
1)

4710 IF PS=0 THEN 4890

4720 ES=SEGS ("BLWP BL ",PS
,5)

4730 PCS="""

4740 R$=""

4750 GOSUB 5060

4760 LOCS=HEXS

4770 U=H2

4780 LOC=U

4790 GOSUB 5090

4800 TS=HEXS

4810 IF PS=6 THEN 4380
4820 LOC=256*MH

4830 GOSUB 5090

4340 R$=HEXS

4850 LOC=LOC+2

4860 GOSUB 5090

4870 PCS=HEXS

4880 PRINT #F:LOCS;" ";E$;TS
;" RS IPCS

4890 GOSUB 4940

4900 IF K=15 THEN 2460

4910 NEXT U

4920 GOTO 930

4930 REM EXIT/HOLD LOOP
4940 CALL KEY(3,K,ST)

4950 IF K¢>32 THEN 5000
4960 CALL SCREEN(12)

4970 CALL KEY(3,K,ST)

4980 IF ST<=0 THEN 4970
4990 CALL SCREEN(15)

5000 RETURN

5010 REM KEY LOOP

5020 CALL KEY(3,K,ST)

5030 IF ST=0 THEN 5020

5040 RETURN

5050 REM PEEK/HEX ROUTINE
5060 M=INT (U/256)

5070 N=U-256%M

5080 GOTO 5140

5090 IF LOC¢32768 THEN 5120
5100 LOCX=LOC-65536

5110 GOTO 5130

5120 LOCX=LOC

5130 CALL PEEK (LOCX,M,N)
5140 HEXS=HXS (INT (11/16)) &HXS
(M-16*INT (M/16)) &HXS (INT (N/1
6)) &HXS (N-16*INT (N/16))
5150 RETURN

5160 END

27

ATR DEFENCE
SPEIL:. I BASIC
70 REM ATRDEFENCE
80 REM BY T.L.WAHL
90 REM COMPUTE 83-04
100 DIM BLOCKS (2) ,PLACE(2) ,B
UILDING(32,2)
110 RANDOMIZE
120 REM BOMB CHAR
130 CALL CHAR(129,"O01CBEFFF
FBEIC")
140 REM CROSSHAIR CHAR
150 CALL CHAR(130,"181818FFF
F181818")
160 CALL CLEAR
170 CALL SCREEN(12)
180 FOR J=5 TO 8
190 CALL COLOR(J,5,16)
200 NEXT J
210 FOR J=9 TO 12
220 CALL COLOR(J,2,14)
230 NEXT J
240 T=0
250 P=0
260 Q=0
270 ¥=0
280 CALL CLEAR
290 PRINT "
EE'E & v 2
330 PRINT " do you need inst
ructions?": :

ATR DEFEN

type Y or

390 CALL KEY(3,Y,STATUS)

400 IF STATUS=0 THEN 390
410 IF Y=78 THEN 750

420 TIF Y=89 THEN 520

430 CALL CLEAR

450 PRINT :" you did not pr
egsYior Novs o5 8 2032 3

490 FOR DELAY=1 TO 500

500 NEXT DELAY

510 GOTO 280

520 CALL CLERR

530 PRINT " YOU MUST STOP

THE FALLING"

540 PRINT "BOMB BY EXPLODING
IT IN MID-ATR.": : :

570 PRINT " -MOVE THE CROS
SHATR-": :

590 PRINT " 1left :HOLD THE

s KEY"

600 PRINT " right:HOLD THE

d KEY"

610 PRINT " up :HOLD THE
e KEY"

620 PRINT " down :HOLD THE
x KEY"

640 PRINT :" WHEN THE BOMB
AND THE"

650 PRINT "CROSSHAIR ARE LIN

28

ED UPR,"

660 PRINT "FIRE BY PRESSING
THE SPACE"

670 PRINT "BAR. THE SOONER Y
OU GET THE"

680 PRINT "BCOMB, THE HIGHER
YOUR SCORE.": : : :

720 PRINT " PRESS any key
TO START"

730 CALL KEY(3,S,STATUS)

740 IF STATUS=0 THEN 730
750 CALL CLEAR

760 CALL COLOR(8,2,1)

770 PRINT " GOOD LUCK!
810 IF R=82 THEN 840

820 GOSUB 2090

830 GOTO 860

840 FOR I=1 TO 250

850 NEXT I

860 CALL CLEAR

870 GOSUB 2300

880 IF T=20 THEN 1860

890 T=T+1

900 CCR0OSS=16

910 RCROSS=21

920 RBOMB=1

930 CALL SCREEN(6)

940 CBOMB=INT (RND*29)+2

950 HS=STRS(T)

960 ROW=2

970 COL=3

980 GOSUB 2520

990 SCORE=P*Q*10

1000 HS=STRS (SCORE)

1010 ROW=5

1020 GOSUB 2520

1030 FOR I=1 TO 0

1040 NEXT I

1050 FOR I=2 TO 5 STEP 3
1060 CALL HCHAR(I,3,32,6)
1070 NEXT I

1030 CLDRCROSS=RCROSS

1090 OLDCCROSS=CCROSS

1100 CALL KEY(3,A,STATUS)
1110 IF A¢»69 THEN 1130
1120 RCROSS=RCROSS-SGN (RCROS
S-1)

1130 IF A¢>88 THEN 1150
1140 RCROSS=RCROSS+SG(22-RC
ROSS)

1150 IF A¢»63 THEN 1170
1160 CCROSS=CCROSS+SGH (31-CC
ROSS)

1170 IF A¢»83 THEN 1190
1180 CCROSS=CCROSS—SGH (CCROS
S-2)

1190 IF RBOMB=1 THEN 1210
1200 CALL VCHAR (RBOMB-1,CBOM
B,32)

1210 IF (RCROSS=OLDRCROSS)* (
CCROSS=0LDCCROSS) THEN 1230

PROGRAMBITEN 94-1

1220 CALL VCHAR (CLDRCROSS,OL
DCCROSS, 32)

1230 CALL VCHAR (RCROSS,CCROS
5,130)

1240 CALL VCHAR (RBOMB,CBOMB,
129)

1250 RBOMB=RBOMB+1

1260 IF RBOMB=23 THEN 1540
1270 IF (RCROSS=RBOMB-1)*(CC
ROSS=CBCOMB) THEN 1290

1280 GOTO 1080

1290 CALL KEY(3,B,STATUS)
1300 IF B=32 THEN 1330

1310 GOTO 1080

1320 REM BCMB DESTROYED
1330 RBOMB=RBOMB-1

1340 CALL SCREEN(10)

1350 CALL VCHAR (RBOMB,CBOMB,
32)

1360 CNT=0

1370 C1=92

1380 C2=47

1390 FOR I=-1 TO 1 STEP 2
1400 CALL VCHAR (RBOMB+I,CBOM
B+I,C1)

1410 CALL VCHAR (RBCMB+I,CBOM
B-I,C2)

1420 NEXT I

1430 C1=32

1440 C2=32

1450 IF CNT=1 THEN 1510

1460 CNT=1

1470 FOR VOL=10 TO 30 STEP 5
1480 CALL SOUND(100,-6,VOL)
1490 NEXT VOL

1500 GOTO 1390

1510 P=P+1

1520 Q=0+ (23-RBOVB)

1530 GOTO 880

1540 REM BOMB HITS THE CITY
1550 CALL VCHAR(22,CBOMB, 32)
1560 CALL SCRERN(9)

1570 CALL COLOR(12,11,1)
1580 CALL VCHAR(23,CBOMB-1,1
22)

1590 CALL VCHAR(23,CBOMB, 32)
1600 CALL VCHAR(23,CBOMB+1,1
23)

1610 CALL VCHAR(24,CBOMB-1,1
24)

1620 CALL VCHAR(24,CBOMB,125
)

1630 CALL VCHAR(24,CBOMB+1,1
26)

1640 FCR I=1 TO 20

1650 NEXT 1

1660 CALL COLOR(12,7,1)

1670 CALL SCREEN(12)

1680 FCR I=1 TO 20

1690 NEXT I

1700 CALL SCREEN(7)

1710 FOR VOL=24 TO 1 STEP 4

1720 CALL SOUND(200,-7,VOL)
1730 NEXT VOL

1740 FOR DVOL=1 TO 24 STEP 4
1750 CALL SOUND(200,-7,DVOL)
1760 NEXT DVOL

1770 FOR J=23 TO 24

1780 FOR I=CBOMB-1 TO CBOMB+
1

1790 CALL VCHAR(J,I,32)

1800 NEXT I

1810 NEXT J

1820 CALL VCHAR(RCROSS,CCROS
S,32)

1830 CALL COLOR(12,2,14)
1840 M=M+1

1850 GOTO 880

1860 CALL CLEAR

1870 CALL SCREEN(4)

1880 CALL COLOR(8,5,16)

1890 PRINT " GAME OV

1930 PRINT "
P
1950 PRINT :"
II;M
1970 PRINT :"

DESTROYED "
MISSED
TOTAL POINTS

2010 PRINT "
AY AGAIIN: : :
2040 CALL KEY(3,R,STATUS)
2050 IF STATUS=0 THEN 2040
2060 IF R=82 THEN 160

2070 END

2080 REM READ CITY DATA

2090 FOR ROW=2 TO 1 STEP -1
2100 FOR COL=1 TO 32

2110 READ BUILDING (COL,ROW)
2120 NEXT COL

2130 NEXT ROW

2140 REM CUSTOM CHER & COLCR
S

2150 CALL CHAR (136, "FFABFFAB
FFABFFFF")

2160 CALL CHAR(128,"003CTEFF
FFFFTE42")

2170 CALL CHAR(131,"42665R66
4242TE66")

2180 CALL CHAR(132,"60606060
£0606060")

2190 CALL CHAR(133,"607858F8
DSF8D8F8")

2200 CALL CHAR(134,"FSASFSAZ
FSASFSFE")

2210 CALL CHAR(135,"C3C3FFAB
FFABFFFF"")

2220 CALL COLOR(14,7,12)
2230 CALL CHAR(122,"80402010
08040201")

2240 CALL CHAR(123,"01020408
10204080")

2250 CALL CHAR(124,"80EOFSFE
FFFFFFFE")

PRESS r TO PL

2260 CALL CHAR(125,"81422418
0081C3E7")

2270 CALL CHAR(126,"01071FTF
FFFFFFFE")

2280 RETURN

2290 REM SET UP CITY

2300 FOR ROW=2 TO 1 STEP -1
2310 FOR COL~1 TO 32

2320 BLOCKS (ROW)=BLOCKS (ROW)
&CHRS (BUTLDING (COL, ROW))
2330 NEXT COL

2340 NEXT ROW

2350 FOR ROW=2 TO 1 STEP -1
2360 FOR COL~1 TO 32

2370 PLACE (ROW)=ASC (SEGS (BLO
CKS (ROW) ,COL, 1))

2380 CALL HCHAR (ROW+22,COL,P
LACE (ROW))

2390 NEXT COL

2400 NEXT ROW

2410 RETURN

2420 REM CITY DATA

2430 DATA 136,134,131,135,13
3,136,136,133

2440 DATA 135,136,136,136,13
3,136,136,135

2450 DATA 135,136,136,134,13
3,136,136,136

2460 DATA 135,132,136,32,131
,135,132,135

2470 DATA 134,133,128,32,132
,32,135,32

2480 DATA 32,32,134,132,132,
32,133,32

2490 DATA 32,32,128,32,132,3
2,133,135

2500 DATA 32,132,132,32,128,
32,132,32,@

2510 REM HORIZONTAL # PRINT

2520 FOR I=1 TO LEN(HS)

2530 DIGIT=ASC(SEGS(HS,I,1))
2540 CALL HCHAR (ROW,COL+I,DI
GIT)

2550 NEXT I

2560 RETURM [

MUSIK MED XB
3v Lars-Erik Svahn
(Repris fran PB 3f-2)

100 CALL CLEAR

110 PRINT TAB(6);"Inledninge
n till":TAB(8);"Gloriasatsen
": :TAB(6);""'Iste confessor'
": :TAB(7);"av Palestrina":

......

120 GOSUB 400 !INITTALIZE
130 !

140 CALL TRIO(3/2,D2,G2,B1)
150 CALL TRIO(2,D2,A2,Al)

PROGRAMBITEN 94-1

160 CALL TRIO(2,E2,G2,Bl)
170 CALL TRIO(4,E2,G2Z,C2)
180 CALL TRIO(4,E2,E2,C2)
190 CALL TRIO(2,D2,F@2,Al)
200 CALL TRIO(2,C2,G2,Gl)
210 CALL TRIO(2,D2,G2,Al)

220 CALL TRIO(2,D2,Fe2,Al)
230 CALL TRIO(2,B1,G2,G1)
240 CALL TRIO(2,D2,G2,Gl)
250 CALL TRIO(2,D2,F1,Al)
260 CALL TRIO(2,C2,F1,Al)
270 CALL TRIO(2,D2,F1,Al)
280 CALL TRIO(2,E2,E1,Gl)
290 CALL TRIO(2,F2,D1,Al)
300 CALL TRIO(2,F2,D1,Bl1)
310 CALL TRIO(2,E2,C1,C2)
320 CALL TRIO(2,E2,(3,C2)
330 CALL TRIO(2,F2,A2,C2)
340 CALL TRIO(2,E2,C3,C2)
350 CALL TRIO(1,D2,B2,G1)

360 CALL QUIET

370 STOP

380 !

390 !|INITIALIZE

400 A0=110 :: A@(=117
410 B0=123

420 C1=131 :: Cel1=139
430 D1=147 :: D@1=156
440 E1=165

450 F1=175 :: Fel=185
460 G1=196 :: G@1=208
470 A1=220 :: A@1=233
430 B1=247

490 C2=262 :: C@2=277
500 D2=294 :: D@2=311
510 E2=330

520 F2=349 :: Fe2=370
530 G2=392 :: G@2=415
540 K2=440 :: A@2=466
550 B2=494

560 C3=523 :: C@3=554
570 D3=587 :: D@3=622
580 E3=659

590 F3=698 :: F@3=740
600 G3=784 :: G@3=831
610 A3=880 :: RA@3=932
620 B3=988

630 PSE=20000

640 RETURN

650 !

660 SUB TRIO(T,P,H,C)

670 FOR A=0 TO 28 STEP 0.9*T
:: CALL SOUND(-500,P,A H,20
,C,16) :: NEXT A

680 SUBEND

690 !

700 SUB QUIET

710 CALL SOUND(1,110,29,110,

29,110, 29)

720 SUBEND

730 !

740 END =

29

NUMTALK
MED SPEECH

av Anders Persson

CALL SAY("123") uttalar tal-
et one-two-three medan CALL
SAY_NUM("123") kommer att
saga one-hundred-and-twenty-
three. Programmet NUMTALK
kan uttala alla tal mellan O
och 999. NUMTALK klarar
4ven positiva och negativa
tal, heltal, decimala tal
och 10-potenser sam expo—
nent. Tal stérre an 999
uttalas siffra for siffra
beroende pd att THOUSAND
saknas 1 ordlistan for
Speech Synthesizer. Pro—
gramlistningen i Micropen-
dium rad 25130 har fel
variabel. NRA ska vara NR sa
att tal pid 1000 och uppat
uttalas riktigt.

100 ! TEST NUMTALK
110 FOR I=0 TO 110
120 CALL SAY NUM(T)
130 NEXT I

25000 !NUMTALK, a subprogram
which allows pronunciation
of numbers correctly in a CA

LL SAY statement

25010 !Can be used in a prog
ram only. Correct format is:
CALL SAY_NUM(#)

25020 !# Can be any numerica
1 data between 0 and 999.
25030 !Keep NUMTALK in MERGE
d format, to be merged with
any program that may be need
ed.

25040 ! Author: Anders Perss
on, Lund, Sweden

25050 SUB SAY NUM(NR)

25060 IF INITED THEN 25120
25070 DIM TEXTS(33)

25080 RESTORE 25370

25090 FOR I=1 TO 33 :: READ

TEXTS (I) :: NEXT I

25100 NUMPOS$S="—+.E012345678
9|I

25110 INITED=-1

25120 NUMS=STRS (MR)

25130 IF ABS(NR)>=1000 OR AB
S(NR) <10 THEN 25210

25140 NEG=(NR<0)

25150 IF NEG THEN NUMS=SEGS(

NUMS, 2, LEN (NUMS)) : : NR=ABS (N
R):: CALL SRY(TEXTS(1))

30

25160 IF NR»=100 THEN GOSUB
25240 !SAY HUNDREDS

25170 O ERROR 25400

25180 IF VAL(NUMS)>=20 THEN
25300 !SAY TY'S

25190 IF VAL(NUMS)>=10 THEN
25350 !SAY TEENS

25200 !SAY DIGITS

25210 FOR I=1 TO LEN(NUMS)::
CALL SAY (TEXTS (POS (NUMPOSS,
SEGS (NUMS,I,1),1))):: NEXT I
25220 SUBEXIT

25230 !SAY HUNDREDS

25240 SPEAKS=TEXTS (POS (NUMPO
S$,SEGS (NUMS,1,1) ,1)) &TEXTS (
33)

25250 IF SEGS(NUMS,2,2) ©>"00
" THEN SPEAKS=SPEAKS&''+AND"
25260 NUMS$=STRS (VAL (SEGS (MUM
$,2,LEN(NUMS)))):: IF NUMS="
0" THEN NUMS=""

25270 CALL SRAY (SPEAKS)

25280 RETURN

25290 !SAY TY'S

25300 SPEAKS=TEXTS (VAL (SEGS (
NUMS,1,1))+423)

25310 IF SEGS (NUMS,2,1) (>"0"
THEN SPEAKS=SPEAKS&'+"&TEXT
$ (POS (NUMPOSS , SEGS (NUMS, 2,1)
1))

25320 CALL SAY(SPEAKS):: NUM
S=SEGS (NUMS, 3, LEN (NUMS))
25330 GOTO 25210 !TO SAY DIG
ITS

25340 ! SAY TEENS

25350 CALL SAY(TEXTS (INT (VAL
(NUMS)) 45)) : 1 NUMS=SEGS (NUMS
.3, LEN (NUMS))

25360 GOTO 25210 ! TO SAY DI
GITS

25370 DATA NEGATIVE, ,POINT,E
,ZERQ,ONE, TWO, THREE, FOUR , FIV
E,SIX, SEVEN, EIGHT , NINE

25380 DATR TEN,ELEVEN, TWELVE
, THIRTEEN,, FOURTEEN , FIFTEEN, S
T+TERN, SEVEMHTEEN , EIGHT+TEE

N, NINE+TEEN

25390 DATA TWENTY, THIRTY,FOR

TY,FIFTY, SIXTY, SEVENTY , EIGHT
Y, NINETY , +HUNDRED

25400 RETURN 25410

25410 ON ERROR STOP :: SUBEN

D n

DISPLAY /AT
by B.A. Traver, USA

Programmer: Do you
like to program in Extended
BASIC but hate to compute

PROGRAMBITEN 94-1

the DISPLAY AT statements?
Well, now you can use your
TI-Writer to campose your
screen and let this program
write the Extended BASIC
program for you (in MERGE
format)

The TI-Writer includes
many convenient features,
such as full screen control
of the cursor. The screen
you are now viewing made use
of those features in its
composition. This program
converted the TI-Writer file
to DISPLAY AT statements.

After you have created
a blank TI-Writer file to
work with (using option 2),
load it into the TI-Writer
text editor and prepare your
program screen. (Erase any
guidelines that enter your
workspace while editing in
fixed mode; those outside
won't hurt anything.)

When you have finished,
save your screen to disk,
using either the Save File
("SF") or Print File ("PF")
option. (This program can
handle either.) If you use
a different filename, your
original blank file will be
available again.

Option 3 will do your
programning work for you,
and you can observe on the
screen the progress of the
program. The result will be
a program on disk in MERGE
format, complete with all
those DISPLAY AT statements
you hate to write.

After entering NEW, you
can merge that new file into
memory, RESequence it as you
think best, and then save it
to disk in MERGE format once
more for later use in your
Extended BASIC program when
you want to make use of it.

Enjoy!
(Sand skiva och frankerat
svarkuvert till redaktoren

fér en kopia av programmet)m

