The RING COMPAHMION
by Ken Gilliland

£> Text Library

B> Portrait of Wagner

C> Hear the Leitmotifs

D> Exit the Program

©1990 NOTUNG Softwsre

BUBBLE - fér Mini Memory
Assembler REF & adresser
Rattelse: GPLLNK

Swedlow TI BITS 8-10
Fast Extended Basic!
Programs Write Programs
NIM - spel for XB

From Basic to Assembly
Beginner Assembler - 5
Color Draw

Hybridprogram XB och AL
Geneve Articles

PHM - moduler £fér 99/4A
Kontrollsiffra
Decimal-komma Ensat
Tigercub Tips #44
User-Treffen in Berlin

Katalog av disk

29

ISSN 0281-1146

BUBBLE FOR
MINITI MEMORY

AORG >7D00
V1 BSS 20
V2 BSS 20
BB DATA >3CTE,>CFDF,>FFFF,>7E3C
co DATA >F333
BL DATA >A000
SP DATA >A800
L DATA >O01DA,>020D,>0271,>02A5
DATA >02D6,>02EL, 0000
BU LWPI >70B8
LI RO,>394
LI R1,CO
LI R2:2
BLWP @>6028
LI RO,>D0O
LI R1,BB
LI R2,8
BLWP @>6028
CLR RO
MOVB @SP,R1
Ll BLWP @>6024
INC RO
CI RO,>300
JNE L1
MOVB @BL,R1
LI R2,LC
L2 MOV *R2+,RO
MOV RO,RO
JEQ SC
BLWP @>6024
JMP L2
SC CLR RO
LI R1,V1
LI R2,>20
BLWP @>6030
LI RO,>20
LI R1,V2
LI R2,>20
L3 BLWP @>6030
AT RO,->20
BLWP @>6028
AT RO,>40
CI RO,>300
JL L3
LI RO,>2EQ
LI R1,V1
BLWP @>6028
LIMI 2
LIMNI 0
JMP SC
AORG >7FE8
TEXT 'BUBBLE'
DATA BU
AORG >701E
DATA >7FES

END]

Jan Alexandersson, Springarvédgen 5,
3 tr, 142 61 TRANGSUND(08-771 05 69)

Redaktdr: Jan Alexandersson
Medlemsregister: Claes Schibler
Tryckning av tidning: Ake Olsson
Programbankir: Borje H&dll

Foreningens adress:
Féreningen Programbiten
c/o Schibler
Wahlbergsgatan 9 NB
§-121 46 JOHANNESHOV
Sverige

Postgiro 19 83 00-6
Medlemsavgiften for 1991 &r 120:-

Datainspektionens licensnummer:
82100488

Annonser, insatta av enskild medlen
(ej féretag), som gdller foérsdljning
av moduler eller andra tillbehdr i
enstaka exemplar dr gratis.

Ovriga annonser kostar 200 kr for
hel sida. For lésblad (kopieras av
annonsdren) som skickas med tid-
ningen giller 200 kr per blad.
Foreningen férbehdller sig rdtten
att avbdja annonser som ej hoér ihop
med foéreningens verksamhet eller ej
pad ett seridst sdtt gdller forsdlj-
ning av originalexemplar av program.

For kommersiellt bruk gédller detta:
Mangfaldigande av innehdllet i denna
skrift, helt eller delvis &r enligt
lag om upphovsridtt av den 30 decem-
ber 1960 férbjudet utan medgivande
av Foreningen Programbiten. Foérbudet
giller varje form av mangfaldigande
genom tryckning, duplicering, sten-
cilering, bandinspelning, diskett-
inspelning etc.

Foreningens tillbehdérsférsdljning:
Foljande tillbehér finns att kopa
genom att motsvarande belopp insétts
pa postgiro 19 83 00-6 (porto ingdr)

Anvindartips med Mini Memory 20:-
Nittinian T-trdéja 40:-
99er mag. 12/82, 1-5,7-9/83(st) 40:-
Nittinian argéng 1983 50:-
Programbiten 84-89 (per Aargdng) 50:-

1990 80:-
TI-Forth manual 100:-

Hel diskett ur programbanken(st)30:-

Enstaka program 5:- st + startkost-
nad 15 kr per skiva eller kassett
(1 program=20kr, 3 program=30 kr).
Se listor i PB89-3 och PB90-4.

2 PROGRAMBITEN 91-5

ASSEMBLER REF & ADRESSER

av Jan Alexandersson

Det finns flera laddare av assembler BLWP UTILITY EQUATES

DIS/FIX 80 som klarar av att 1&sa ut

REF till BLWP (t.ex. VMBW) och vissa BLWP EA XB MM FW

fasta adresser (t.ex. GPLWS).

Editor/Assembler, Mini Memory och VSBW 210C 2020 6024 210C

Funnelweb klarar av dessa enligt VMBW 2110 2024 6028 2110

féljande tabeller. Editor/Assembler VSBR 2114 2028 602C 2114

krdaver for vissa av dessa att den VMBR 2118 202C 6030 2118

fristdende filen BSCSUP laddas in. VWTR 211C 2030 6034 211C

Extended Basic kan ej ldsa dessa REF KSCAN 2108 201¢C 6020 2108

utan man maste anvdnda EQU till GPLLNK 2100 - 6018 2100

respektive adress. XMLLNK 2104 2018 601C 2104
DSRLNK 2120 - 6038 2120
LOADER 2124 = 603C 2124

REF TILL BLWP KAN LOSAS NUMASG - 2008 6040 -
NUMREF - 200C 6044 -

EA EA XB MM FW STRASG - 2010 6048 -

LOADER BSCSUP LOADER LOADER LOADER STRREF - 2014 604C =
ERR - 2034 6050 -

VSBW = = VSBW VSBW

VMBW = = VMBW VMBW

VSBR - = VSBR VSBR PREDEF SYMBOLS EQUATES

VMBR = = VMBR VMBR

VWTR - - VWTR VWTR SYMBOL EA XB MM FW

KSCAN - - KSCAN KSCAN

GPLLNK - - GPLLNK GPLLNK SCAN 000E 000E Q00E 000E

XMLLNK - = XMLLNK XMLLNK UTLTAB 2022 = 7012 2022

DSRLNK - = DSRLNK DSRLNK PAD 8300 8300 8300 8300

LOADER - - LOADER LOADER GPLWS 83E0 83E0 83E0 83E0

- NUMASG - NUMASG - VDPWA 8C02 8C02 8C02 8C02

- NUMREF - NUMREF - VDPRD 8800 8800 8800 8800

- STRASG - STRASG - VDPWD 8C00 8C00 8C00 8C00

= STRREF - STRREF - VDPSTA 8802 8802 8802 8802

= ERR = ERR = GRMWA 9C02 9C02 9Cco2 9C02

GRMRA 9802 9802 9802 9802
GRMRD 9800 9800 9800 9800

REF TILL FASTA ADRESSER KAN LOSAS GRMWD 9C00 9Cc00 9C00 9C00
SOUND 8400 8400 8400 3400

EA EA XB MM FW SPCHRD 9000 9000 9000 9000

LOADER BSCSUP LOADER LOADER LOADER SPCHWT 9400 9400 9400 9400m

SCAN - - SCAN SCAN

UTLTAB - - UTLTAB UTLTAB RATTELSE: GPLLNK

PAD = = PAD PAD

GPLWS - - GPLWS GPLWS Av okénd anledning rdkade det bli

VDPWA - - VDPWA VDPWA fel i GPLLNK i PB 91-2.15. De tva

VDPRD - - VDPRD VDPRD raderna JMP RTNAD och BSS »>20 ska

VDPWD - = VDPWD VDPWD strykas. Inledning ska se ut sd hér:

VDPSTA - - VDPSTA VDPSTA .

GRMWA - - GRMWA GRMWA GPLLNK DATA GLNKWS

GRMRA - - GRMRA GRMRA DATA GLINK1

GRMRD - - GRMRD GRMRD RTNAD DATA XMLRTN

GRMWD - = GRMWD GRMWD 0.S.V.

SOUND - - SOUND SOUND

SPCHRD - - SPCHRD SPCHRD Aven den tidigare versionen fungerar

SPCHWT - - SPCHWT SPCHWT men de extra raderna 4r meningsldsa.

PROGRAMBITEN 91-5 3

SWEDLOW TI BITS * 8-—10 =*

by Jim Swedlow, USA

(This article originally appeared in
the User Group of Orange County,
California ROM)

FAIRWARE REVIEW: DISK UTILITIES

You may have a favorite disk editor
- one that you know and love (?) -
one that meets your needs. Mine has
been Miller Graphics' Advanced Diag-
nostics. At least until now. John
Birdwell's DISK UTILITIES has jumped
to the top of my list. It is easily
the best sector editor I have used.

It is what a sector editor should
be. You can dump a file to your
printer in HEX and ASCII. DISK
UTILITIES will follow the file on
the disk even if it is fractured.
The file dump is like Disk+Aid with
HEX on the left and ASCII on the
right. The print out can be in
condensed print. You can also print
a sector or a group of sectors.

You can compare two files or disks.
Any sectors that do not match will
be dumped to your printer. It can
also give you a detailed file re-
port.

DISK UTILITIES supports a string
search. You can search a disk, any
part of the disk or within a file.
The string can be in HEX or ASCII.

The sector editor gives you a full
screen editor. The various controls
are easy to remember. Pressing CTRL
H and CTRL A, for example, switches
the screen display between HEX and
ASCII. CTRL W will write the sector
back to disk. Unlike Advanced Diag-
nostics, DISK UTILITIES keeps track
of the current sector for writing
sectors. You can, however, write to
any sector on any disk.

Another nice feature is the Disk Re-
port. This prints a disk catalog
with two new features. First, the
catalog includes each file's sector
numbers. Invaluable if have it be-
fore you blow a disk directory.
Also, DISK UTILITIES hides a short

file description in the file header
and prints it out as part of the
catalog.

This program is a sector editor
only. It doesn't have the ability
to look into your 4A's memory that
Disk+Aid h&s nor the extensive
documentation and diagnostic
features of Advanced Diagnostics.
But it does have all the features
one needs in a disk editor.

There is more, but this should give
you an idea of what DISK UTILITIES
can do. Without doubt, it warrants
your serious consideration.

QUOTES OF THE MONTH

"I cried all the way to the bank."
---Wladziu Valentino (Lee) Liberace
(1919-)

"In a hole in the ground there lived
a hobbit. Not a nasty, dirty, wet
hole, filled with the ends of worms
and an oozy smell, nor a yet a dry,
bare, sandy hole with nothing in it
to sit down on or to eat: it was a
hobbit-hole, and that means
comfort."
---John Ronald Reuel (J. R. R.)
Tolkien
(1892-1973), from "The Hobbit"

"It is better to know some of the
questions than all of the answers."
---James Thurber (1894-1961)

CUSTOMIZING FUNNELWRITER (Funnelweb)

It has been said that FUNNELWRITER
may be the most significant program
written for the TI. One could argue
this point but not easily dismiss
it.

I have been working on getting
FUNNELWRITER to support the
utilities that I normally use.

The first thing I wanted to do was
to enable FUNNELWRITER to load FAST-
TERM. When you press 5 on the main

4 PROGRAMBITEN 91-5

menu, one of the options that comes
up for number 2 is MODEM. I could
not find, however, what file name

was needed. After a bit of search-

ing (using DISK UTILITIES), I found
it: MD.

FAST-TERM comes with two files named
UTIL1 and UTIL2. You must rename
them (using DM1000) to MD and ME and
then copy the files to your FUNNEL-
WRITER disk. Change the names be-
fore copying because there already
is a UTIL1 on the FUNNELWRITER disk
and you do not want to overwrite it.

When you switch item 2 to DISK EDIT,
FUNNELWRITER loads Disk Patch, or
Disco. This is a bare bones disk
sector editor. I wanted to load
DISK UTILITIES so I removed Disco
from my FUNNELWRITER disk, renamed
the two DISK UTILITIES Files (UTIL1
and UTIL2) to DP and DQ and copied
them.

I did all of this renaming and copy-
ing on back-up copies. My originals
are safe and unmodified. Always
keep a master copy of important pro-
grams.

WORD OF THE MONTH

DIVOT: a piece of turf gouged out
with a golf club making a stroke.

"On the one hand, the insecure and
anxious youth asks your approval of
whatever he says with every y'know.
On the other hand, the omniscient
stripling's y'knows are simply de-
claring what he says to be the only
possible truth. 1Indeed, to disagree
would be an admission that you had
an IQ no higher than an unreplaced
divot."
---Edmund Midura, "Um's the Word",
The Inquirer Magazine, 1/30/77

ON GETTING FAIRWARE

On a shelf high above my computer is
a large disk box with my masters.
One of my prized possesions in that
box is an original DISK MANAGER 1000
(v3.3) from the Ottawa TI Users
Group. I have a copy from our lib-
rary but somehow it is not the same.

Our library has many fine fairware
programs and I (among others) have
often urged you to support fairware
authors. One way is to request a
program directly from the author
(and then send some support).

Just a thought.

ALPHABET SOUP

We are constantly bombarded with
acronyms. This list is provided as
a public service to help you sound
like you know what you are talking
about!

AI - "Artificial Intelligence" -
trying to make computers think like
people. A science in its infancy.

ALGOL - "ALGOrithmic Language" - a
programming language.

ANSI - "American National Standards
Institute"
APL - "A Programming Language" - an

interactive programming language
that is well suited for handling
complex operationsg on arrays.

ASCII - "American Standard Code for
Information Interchange" - and you
thought that the II was version two!
Pronounced "ask-key".

BASIC - "Beginners All purpose
Symbolic Instruction Code" - some
suggest that the acronym came after
the name!

BBS - "Bulletin Board System"

BIOS - "Basic Input Output System" -
the part of CP/M or MS-DOS that
allows the CPU to communicate with
the keyboard, screen, printer, etc.

C - a programming language developed
at Bell Labs. Its predecessors were
B (1970) and BCPL (1967).

CMOS - "Complementary Metal Oxide
Semiconductor" - a type of IC noted
for its low power consumption and
resistance to damage. Often used in
portable computers. IC's of this
type usually have the letter C in
their nane.

PROGRAMBITEN 91-5 5

CP/M - "Control Program for Micro-
computers" - a family of operating
systems that would have been the
standard for business had IBM not
used PC-DOS (see MS-DOS).

CPU - "Central Processing Unit" -
the part of the computer where
arithmetic and logical operations
are performed and instructions are
decoded and executed.

CRT - "Cathode Ray Tube" - the
screen on your TV or monitor.

EOF - "End Of File"

IC - "Intergrated Circuit" - a chip
with many miniature transistors and
other devices.

ISO - "International Standards
Organization "

LISP - "LISt Processor" - a
progranming language often used for
AI applications.

MODEM - "MODulator-DEModulator™ - a
device that encodes and decodes data
for transmission over telephone
lines, coaxial cable, fiber optics,
microwaves, etc.

MS-DOS - "MicroSoft Disk Operating
System" - the operating system for
computers that use the 8086 or 8088
microprocessor family. MS-DOS is
sold by IBM as PC-DOS for the IBM
PC.

PROM - "Programable Read Only
Memory" - a chip that can be pro-
grammed once but not revised. EPROM
[Erasable PROM] chips can be erased
and reprogrammed.

TTL - "Transistor-Transistor Logic"
- a high speed IC that is often used
for input-output devices (a TTL
monitor, etc).

WYSIWYG - "What You See Is What You
Get" - brought to its current
potential by the Mac, this means
that your item appears on your CRT
exactly as it will look when it is
printed.

QUOTES OF THE MONTH

"The optimist proclaims that we live
in the best of all possible worlds;
the pessimist fears that this is
true."

—-—--James Branch Cabell

"There are moments when everything
goes well; don't be frightened, it
won't last."

-=-Jules Renard

"It's not possible to make things
fool proof; fools are too
ingenious."

-—--Edsel Murphy

COMPILED, ASSEMBLED AND INTERPRETED
Or why BASIC is slower than Assenmbly

A computer language is what you use
to tell your computer what to do. It
is a common vocabulary. If you have
done any programming, you know that
your computer believes this language
literally.

Your computer don't speak BASIC or
Assembly Language. It speaks
Machine Language (which is code that
the CPU can execute directly).

When a BASIC program is running
(also called during 'run time')
something called a BASIC interpreter
acts as a middle man between the
program and the CPU. As each line
executes, the interpreter reads the
instructions and translates them to
Machine Language. This takes time.

In Assembly Language, you write a
source program using the Editor and
then use the Assembler to assemble
it into Machine Language. That's
why the module is called Editor/
Assembler. When you run an
assembled program, execution is much
faster as there is no need for an
interpreter.

A compiled program is a hybrid of
these two. You write your source
program in a higher format. The
'higher' a language is the closer it
is to English. The 'lower' it 1is,
the closer it is to Machine
Language. BASIC is a high high
level language while Assembly is low
level.

The language called C looks somewhat

1S3 PROGRAMBITEN 91-5

FAST EXTENDED BASIC!

87/11 -

HELLO (part 2)

(c) 1989 Lucie Dorais, Ottawa TI-99/44 Users' Group, Canada

So, did you type and, more import-
ant, keep last month's program? It
was a simple graphic (and rather
superfluous sound) program. Despite
its shortness, it included all the
subprograms that XB puts at our dis-
posal to use the graphics, less the
SPRITES capabilities of course. I
save this lesson for a time when I
will be more inspired to write a
sprity program!

Most CALL statements are shared by
TI BASIC: SCREEN, COLOR, CHAR,
HCHAR, VCHAR, GCHAR (forgot to put
one in my example program...). I
will not explain here what they do,
I know you know. What I want to
stress is rather the new methods
that XB gives us so that we spend
less time writing the program, and
Tex spends less time running it. In
addition, XB has two additional and
very useful commands: CHARPAT and
CHARSET.

CALL COLOR: in BASIC, you write the
statement as: CALL COLOR(SET,FGRD,
BGRD); if you want to change the
colors of more than one set, you
have to write a program line for
each set, or to use a FOR NEXT loop;
both methods are slow. XB uses mul-

like BASIC but complies into Machine
Language.

Now you know.

WORD OF THE MONTH

ALGORITHM: An algorithm is a
sequence of instructions that tell
how to solve a particular problem.
An algorithm must be specified
exactly, so there can be no doubt
about what to do next, and it must
have a finite number of steps. A
computer program is an algorithm.
Some programs are so complicated
that there is no algorithm to solve
then.

Enjoy.]

tiple statements, but why take all
that memory when we can simply use

290 ... :: CALL
(:16,5,1,
BSF

COLOR
16,6,
B S

r

[- I ~S

1 1,16,7,1,16)

F F BSF B
What we do here is change the color
of the sets(S) 4 to 7: transparent
(1) for foreground(F), white(1l6) for
background (B). This is when we
wanted all characters to "disappear”
from the screen, which we had made
white in line 210. By the way,
since there is only one screen, the
CALL SCREEN statement cannot get
multiple variables... In the re-
maining of the program, the sets get
new colors at a different time, so
the statements are simpler (lines

320, 340 and 350).

CALL CHAR: Since the sprites can
consist of four characters, XB has a
way to define them with a 64-char.
long string; if this is too long for
your purpose, you can use a shorter
one. And, unlike the case of
sprites, the ASCII number of the
first character to be defined does
not have to be a multiple of 4! But
unlike BASIC, you must include the
trailing "0"s, so that Tex knows
when to stop a character and start
the next one. Only the last charac-
ter to be redefined can live without
its trailing "0"s, if it has any of
course (I included them in the ex.
program, lines 250 and 280, I over-
did it a bit...). And, to make your
programming easier, you can put more
than one character definition into
your statement:

240 call sound(...covveeuen.) :: CALL
CHAR(56,A%,57,"3F3F3F3F3F3F3F
3F8080808080808080FEFEFEFEFEFFFFFF")

is the same as if we had written a
statement for each character:

240 CALL CHAR(56,A$) :: CALL
CHAR(57,"3F3F3F3F3F3F3F3F") :: CALL
CHAR(58,"8080808080808080") :: CALL
CHAR(59,"FEFEFEFEFEFFFFFF")

PROGRAMBITEN 91-5 7

A little tip here: using variables
whenever a string or a number is
used more than once saves memory two
ways: less characters to write in
the program, less running time since
Tex does not have to put the string
in its memory first. A$ contains
the character definition for char.
56, but also for char. 72 and 85, so
we have defined it only once, in
line 230.

Unfortunately, our other friends of
the CHAR family, namely H, V and G,
do not allow the use of multiple
variables. I don't know why for
GCHAR, but I do know that since
HCHAR and VCHAR can have the repeti-
tion added as an option, poor Tex
would get very, very confused.

Now the NEW STUFF: in line 200, we
display a sentence on the screen; if
you ran the program, you saw "Want
to have A surprise?", but soon the
character "A" became a shapeless
graphic, while "W" and "?" stayed
nicely on the screen. The "A" was
not an accident, I put it there ex-
pressly to show you what I did to
the other two. Since we needed the
char. "W" and "?" for our graphics,
I redefined two other characters,
namely "#" and "$", and if you.
trusted me, you have typed line 200
as "#ant to have A surprise§".

To redefine them as legitimate "W"
and "?" that would look exactly like
the originals, we could have used a
magnifying glass to study those
characters on the screen, then used
a chardef program to design them,
then used a CALL CHAR statenent
using those definitions. Actually,
that is what you have to do in TI
BASIC. The wise gurus of XB have
designed a much quicker function:
CALL CHARPAT, which reads the defi-
nition of a character into a string.
This does not necessarily read the
standard definition, but the defini-
tion that the character has when
CALL CHARPAT is encountered in the
program. In our example, of course,
the definition was the standard one,
since we had just started our pro-
gram. So the line

170 ... :: CALL CHARPAT(63,A$,87,B$)
:: CALL CHAR(36,A$,35,B$)

reads the definition of char. 63,
"?"_ into AS, and that of "W" (ASCII
87) into B$. What to do with AS$ and
BS now? Well, we use them right away
to redefine our new characters,
using the same string variables:
"§", ASCII 35, becomes A$, i.e. a
"?", while "#", ASCII 35, becomes
B$, i.e. a "W".

If you really ran the program
through its three screens, you
noticed that the last one said
"NOW... THAT WAS AN EASY ONE?", and
this great phrase was written exact-
ly like that in line 370. How come
that we can now use "W" and "?" with
confidence? Because of another magic
XB statement: CALL CHARSET in line
360. 1Its purpose is to restore the
standard character definitions, but
only for characters 32 through 95;
that means that the lower case is
not restored back (CHARSET will
restore the color for char 30-143

" but only pattern for char 32-95, ed.

note). Note also that it restores
the standard character set, not
whatever definition was there before
the CALL CHAR statement.

I hope this is not too confusing.
But, will you say, where are the
goodies this month? None in the pro-
gram itself, but I found a nice
postscript on PRE-SCAN, one that is
not mentioned in the manual. It
comes from Paris, France ("99 Maga-
zine"). If you pre-scan your pro-
gram, you can do what Tex normally
bluntly refuses to do: a FOR NEXT
after an IF statement... Try this
one:

100 PRINT "PRESS <1> or ANY other
key“

110 CALL KEY(0,K,S)
110

120 IF K=49 THEN FOR I=1 TO 10 ::
PRINT I :: NEXT I :: GOTO 100 ELSE
FOR I=1 TO 10 :: PRINT "?" :: NEXT I
:: GOTO 100

: IF S=0 THEN

It will not work, Tex will say "*
SYNTAX ERROR in 120". Now add this
pre-scan line:

90 GOTO 100 :: K,S,I :: CALL KEY ::

leP-

and run it. It works! =

8 PROGRAMBITEN 91-5

PROGRAMS THAT WRITE
PROGRAMS

by Jim Peterson, Tigercub, USA

The first five parts of this series
were written long ago, but since
then I have found a new method to
write programs that really do write
programs. I must give Karl Romstedt
credit for this idea.

To illustrate this technique, I will
use a program which writes an auto-
loader to display a diskfull of pro-
grams by their complete name rather
than the abbreviated filename. This
is the LOAD program which I put on
all my TI-PD disks.

First, we key in the part which will
always be a part of the LOAD pro-
gram. Do not change the line numbers
because there is a reason for then,
and leave that REM in line 11 be-
cause something else will be plugged
in there later.

10 CALL CLEAR :: DIM MS$(127)
:: CALL SCREEN{5):: FOR $=0
TO 14 :: CALL COLOR(S,2,8)::
NEXT S :: CALL PEEK(8198,3)
:: IF A<>170 THEN CALL INIT
11 REM

12 ON WARNING NEXT

13 X=X+1 :: READ M$(X):: IF
M$ (X) <>"END" THEN 13

14 R=3 :: FOR J=1 TO X-1 ::
READ X$§ :: DISPLAY AT(R,1):S
TRS(J) ;TAB(4);X$:: R=R+1 ::
IF R<23 THEN 17

15 DISPLAY AT(24,1):"Choice?
or 0 to continue 0" :: ACCE

PT AT(24,26)VALIDATE(DIGIT)S
IZE(-3):N :: IF N>X-1 THEN 1
5

16 IF N<>0 THEN 19 :: R=3

17 NEXT J

18 DISPLAY AT(24,1):"Choice?
" :: ACCEPT AT(24,9)VALIDATE
(DIGIT):N :: IF N=0 OR N»>X-1
THEN 18

19 CALL CHARSET :: CALL CLEA

R :: CALL SCREEN(8):: CALL P

EEK(-31952,A,B):: CALL PEEK(

A*256+B-65534,A,B) :: C=A*256

+B-65534 :: AS="DSK1."&MS(N)
:: CALL LOAD(C,LEN(AS))

20 FOR J=1 TO LEN(AS$):: CALL

LOAD(C+J,ASC(SEGS (AS,J,1)))
:: NEXT J :: CALL LOAD(C+J,0
):: GOTO 10000

10000 RUN "DSK1.1234567890"

Now, save that "source code" by SAVE
DSK1.CAT/S,MERGE . Then key in this
"assembler" which will convert the
"source code" into an "object code."

100 OPEN #1:"DSK1.CAT/S",VAR
IABLE 163, INPUT

110 OPEN #2:"DSK1.CAT/O",VAR

IABLE 163,0UTPUT

120 FOR J=10 TO 21 :: LINPUT
#1:M$:: PRINT #2:CHRS$(0)&C
HRS (J) &CHRS (156) &CHRS (253) &C

HRS$ (200) &CHRS (1) &"2"&CHRS (18
1) &CHRS(199) &CHRS (LEN (M$)) &M
$&CHRS$ (0) :: NEXT J

130 PRINT #2:CHR$(255)&CHRS (
255):: CLOSE #1 :: CLOSE #2

Note what this routine does. It
reads in each line of the tokenized
CAT/S and prints it back out to
CAT/O preceded by line numbers 10 to
21 in tokenized two-byte format
followed by the tokens for PRINT #2,
the tokens for a quoted string
followed by the CAT/S record and the
CHRS$ (0) end-of-line indicator. Then
it prints the double-255 end-of-file
indicator and closes the files.

Now key in the CATWRITER program.

1 CALL CLEAR :: CALL TITLE(1
6,"CATWRITER"):: CALL CHAR(1
27,"3C4299A1A199423C"):: DIS
PLAY AT(2,10):"Version 1.4":
;:TAB(8); Tigercub Softwar
e‘l

2 DISPLAY AT(15,1):"For free
":"distribution":"but no pri
ce or":"copying fee":"to be

charged." :: FOR D=1 TO 500
:: NEXT D :: CALL DELSPRITE(
ALL)

3 DISPLAY AT(2,3)ERASE ALL:"
TIGERCUB CATWRITER V.1.4":;:

PROGRAMBITEN 91-5 9

10

" Will read a disk directory
,":"request an actual progra
n":"name for each program-ty

pell

4 DISPLAY AT(7,1):"filename,
and create a merg-":"able Q
uickloader which dis-":"play
s full program names and":"r
uns a selected program."

5 DISPLAY AT(12,1):" Place d
isk to be cataloged":"in dri

ve 1 and press any key" :: C

ALL KEY(0,K,S):: IF S=0 THEN
5

9 OPEN #2:"DSK1.CAT",VARIABL

E 163,0UTPUT

100 OPEN #1:"DSK1.",INPUT ,R

ELATIVE, INTERNAL :: INPUT #1
:N$,A,J,K :: LN=1000 :: FN=1
100

110 DISPLAY AT(12,1):"Disk n
ame?":;:N$:: ACCEPT AT(14,1
)SIZE(-28):N$:: LX$=STRS$(14
~-LEN(N$)/2):: LXLEN=LEN(LXS)
120 PR§=CHRS$(0)&CHRS(11) &CHR
$(162) &CHRS (240) &CHRS (183) &C
HRS (200) &CHRS (1) &"1"&CHRS (17
9) &CHRS (200) &CHRS (LXLEN) &LXS
130 PR$=PRS&CHRS(182) &CHRS (1
81) &CHRS (199) &CHRS (LEN (NS)) &
NS$&CHRS (0)
140 PRINT #2:PRS
145 DISPLAY AT(23,1):"To omi
t a file, press Enter"
150 X=X+1 :: INPUT #1:P$,A,J
(B :: IF LEN(P$)=0 THEN 190
:: IF ABS(A)=5 OR ABS(A)=4 A
ND B=254 THEN 160 ELSE X=X-1
:: GOTO 150
160 DISPLAY AT(12,1):P§;"
PROGRAM NAME?" :: ACCEPT AT
(14,1)SIZE(25) :F§ :: IF F§="
" THEN X=X-1 :: GOTO 150
170 PRINT #2:CHRS(INT(FN/256
)) &CHRS (FN-256*INT (FN/256)) &
CHRS$(147) &CHRS (200) &CHRS (LEN
(F$)) &F$S&CHRS (0) : ¢ FN=FN+1
180 M$=MS&CHRS (200) &CHRS (LEN
(P$)) &PS&CHRS (179) :: IF X<11
THEN 150
190 IF M$="" THEN 210
200 PRINT #2:CHRS(INT(LN/256
)) &CHRS (LN-256*INT (LN/256)) &
CHR$ (147) &SEGS (M$,1,LEN (M$) -

1)&CHRS (0) :: LN=LN+1 :: M§="
" :: X=0 :: IF LEN(P$)<>0 TH
EN 150

210 PRINT #2:CHRS$(INT(LN/256
)) &CHRS (LN-256*INT (LN/256)) &
CHR$ (147) &CHRS (200) &CHRS$ (3) &
"END"&CHRS (0)

220 PRINT #2:CHR$(255) &CHRS (

255):: CLOSE #1 :: CLOSE #2
230 DISPLAY AT(8,1)ERASE ALL
:"Enter -":;:" NEW":;:" ME
RGE DSK1.CAT":;:" DELETE ""
DSK1.CAT""":;:" SAVE DSK1.L
OAD"

240 SUB TITLE(S,TS)

250 CALL SCREEN(S):: L=LEN(T
§):: CALL MAGNIFY(2)

260 FOR J=1 TO L :: CALL SPR
ITE(#J,ASC(SEGS(TS,J,1)) ,J+1
= (J+1=8)+(J+1=S+13)+(J>14) *1
3,3*(170/L),10+3*(200/L)) ::
NEXT J

270 SUBEND

Next, enter MERGE DSK1.CAT/O and
that "object code"™ will pop into
place right after line 9. If you
list it, it will look like a blown
file, because most of the token
codes are unprintable, but don't
worry. Save the program as CAT-
WRITER.

When you run the program, it will
open an output MERGE format file
called CAT and write those merged
lines from CAT/O in MERGE format.
Then it will open the disk you are
cataloging, read the directory
sector, and ask you for a disk name
with the existing diskname as de-
fault. You can select any disk name
you want to title the menu screen,
up to 28 characters long. Line 110
computes the position to center the
title, and lines 120-140 write to
the CAT file a tokenized line 11
{overwriting that REM line) to
display your title at the top of the
screen.

Line 150 reads each filename from
the disk directory, skipping over
anything that is not a program (no
one yet has been able to tell me how
to distinguish an assembly image
"program"!). For each filename, it
will ask you for a complete program
name. If you don't want a program on
the menu (such as an XB program that
is run from another program, or an
image file), just press Enter.
Otherwise the program name you
select will be printed as DATA by
line 170, in tokenized format in
lines starting with 1100 (note the
FN=1100 in line 100) and increment-
ed by 1. Lines 180-200 assemble the
filenames into DATA lines of up to

PROGRAMBITEN 91-5

ten names, and tokenize them in
lines beginning with 1000.

When the last filename has been
read, line 210 prints one last DATA
item "END" to signal line 13 to stop
reading, and then prints the double-
255 end-of-file. Then you are given
instructions to clear memory with
NEW, merge in the CAT file, delete
it because you don't need it any
more, and save it back as LOAD.

When you list the LOAD program, you
will find the original CAT/S restor-
ed in lines 10-19 and 1000, the line
to display the title in line 11, the
filenames in DATA lines starting
with 1000 and the program names in
DATA lines starting at 1100.

When you run the program, it will
display the disk name, and read the
filenames into an array. Then it
will display the program nanes,
numbered, on as many screens as
necessary, and ask you to select a
program by number. The corresponding
filename by number is selected from
the array, and lines 19-20 rewrite
line 10000 to RUN that filename.
List the LOAD program after you have
used it to load something, and you
will see that it has changed.

That algorithm in lines 19-20 was
published in one of the earliest
99'ER magazines, in a letter by A.
Kludge. It has been the basis for
every XBasic menu loader, and has
saved us uncounted thousands of
hours. The author had asked me not
to reveal his identity, but I think
I can now tell you that "A. Kludge"
was really the late Dr. Stefan-
Romano, who passed away recently at
the age of 57. He was a brilliant
man who did much for the TI world,
at first as editor of the IUG
library, and then through the Amnion
library and Amnion Helpline. He was
of great help to me on several
occasions.

Some of you may have obtained from
me a copy of CATWRITER which wrote
GOSUB 21 in line 12, and CALL LOADs
in lines 21-25 to change the cursor
to my Tigercub emblem. If you have
begun to have problems with the re-
sulting LOAD program or with my
previous Tigercub Menuloader which
used the same CALL LOADs, I have
finally found out the cause. When my
Horizon RamDisk is on, any program
containing those CALL LOADs will
lock up the second time it is run!

NIM -—

by Earl Raguse, Bug News, USA

110 ! kkkdkkdkhkokkokkkkkkkkkkkkkk

120 ! NIM(XBASIC)

130 ! A JOLLY? GOOD GAME
140 ! BY EARL RAGUSE
150 ! REV 3/25/86

160 ! BASIC IDEA FROM
170 | "LEARNING BASIC"

180 I kkkkkkkkkokkokkokokkkkkkkkxk

190 CALL CLEAR

200 CALL CHARPAT(42,Z8):: CA
LL CHAR(96,ZS)

210 CALL COLOR(9,16,1):: CAL
L SCREEN(5)

220 AS=RPTS(" ",28)

230 C$(1)=A8&"" ot

240 Ccs(2)=A8&" "

250 Cs(3)=A8%&""

SPEL FOR XB

TH

260 Cc$(4)=a8&"> =~ * > > 7

'

270 C$(5)=A8&""

T

280 CS(6)=A%&""

290 FOR V=3 TO 23

300 FOR U=1 TO 6

310 DISPLAY AT(9+U,1) : SEGS(C
$(u),v,28)

320 CALL SOUND(100,330,10,66
0 ;151104 6,=4,1)

330 NEXT U

340 FOR I=1 TO 10 NEXT I
350 NEXT V

360 FOR I=1 TO 500 NEXT I

370 FOR V=23 TO 50 STEP 2
380 FOR U=1 TO 6

PROGRAMBITEN 91-5 1.1

390 DISPLAY AT(9+U,1) : SEGS(C
$(U),v,28)

400 NEXT U

410 CALL SOUND(100,400,9)
420 NEXT V

430 CALL SCREEN(6)

440 R=21

450 GOSUB 950

460 DISPLAY AT(3,6)BEEP SIZE
(28) : "LETS PLAY NIM !!"

470 DISPLAY AT(10,1)BEEP SIZ
E(28) :"DO YOU WANT INSTRUCTI
ON Y:N"

480 DISPLAY AT(12,1)SIZE(28)
:"PRESS <Y> FOR YES"

490 DISPLAY AT(13,1)SIZE(28)
:"PRESS <N> FOR NO "

500 CALL KEY(0,K,S):: IF S=0

THEN 500 :: IF K=89 THEN 51
0 ELSE 590
510 CALL CLEAR :: GOSUB 950

520 PRINT "THIS IS AN ANCIEN
T CHINESE":"GAME. THERE ARE
21 STONES":"<ASTERISKS> IN A
ROW; YOU":"CAN TAKE 1,2,0R
3 STONES":"IN YOUR MOVE. ";
530 PRINT "THEN I CAN":"TAKE
1,2,0R 3 STONES IN MY":"MOV
E. WE ALTERNATE MOVES.": :
540 PRINT "THE PLAYER WHO TA
KES THE":"LAST STONE LOSES!"

550 PRINT "I WILL BROOK NO I

NFRACTION":"OF THE RULES AND
I AM VERY":"ALERT! DON'T TR

Y TO FOOL ME.": :

560 PRINT " READY; PRESS ANY
KEY "

570 CALL KEY(0,K,S):: IF s=0
THEN 570

580 DISPLAY AT(12,4)BEEP SIZ

E(24) :"OK! YOU GO FIRST.";
590 R=21

600 CALL COLOR(2,16,1):: GOS

UB 950

610 DISPLAY AT(12,4)BEEP SIZ
E(28) : "HOW MANY DO YOU TAKE?
620 CALL KEY(0,K,S):: IF s=0
THEN 620

630 IF (K>48 AND K<52)THEN 6
80

640 X=X+1 IF X>6 THEN X=6
650 ON X GOSUB 1240,1260,128
0,1300,1320,1340

660 FOR I=1 TO 1500 :: NEXT
I :: GOSUB 950

670 GOTO 610

680 N=K-48

690 R=R-N

700 DISPLAY AT(14,4)BEEP SIZ

E(28) :"YOU TAKE";N;"LEAVING"

R

710 GOSUB 990

720 FOR I=1 TO 500 :: NEXT I
730 IF R=1 THEN 1660

740 IF FLAG=1 THEN GOSUB 113
0

750 N=4-N

760 R=R-N

770 DISPLAY AT(12,4)BEEP SIZ
E(28):"I TAKE";N;"LEAVING ";
R

780 DISPLAY AT (14,1)SIZE(28)

PR T T

790 FOR I=1 TO 200 :: NEXT I

800 GOSUB 990

810 FOR I=0 TO 500 :: NEXT I
820 IF R>1 THEN 610

830 PRINT " SINCE THERE IS
ONLY ONE":" STONE LEFT I WI
N! ",T

840 PRINT

850 IF (FLAG=1 AND R=1)THEN
1480

860 CALL SOUND(1000,131,0,16
55,196,310 ,~3,28)

870 CALL SOUND(1000,262,0,33
0:0,392,0)"

880 CALL SOUND(1000,524,0,66
0,0,784,0)

890 Z=Z+1 :: IF Z>6 THEN Z=6

900 PRINT

910 ON Z GOSUB 1520,1530,155

0,1570,1590,1610

920 PRINT

930 PRINT "WANT TO PLAY AGAI

N? Y:N > "

940 CALL KEY(0,K,S):: IF K=8

9 THEN 590 ELSE IF K=78 THEN
1010 ELSE 940

950 CALL CLEAR

N(2*Z2+3)

960 DISPLAY AT(20,4):"221111

111111"

970 DISPLAY AT(21,4):"109876
543210987654321"

980 CALL HCHAR(18,27-R,96,R)

GOTO 1000
990 CALL HCHAR(18,6,32,21-R)
1000 RETURN

CALL SCREE

1010 CALL CLEAR :: CALL SCRE
EN(INT(RND*12)+2)
1020 Y=Y+1 IF Y>6 THEN Y=

6

1030 ON Y GOSUB 1360,1380,14
00,1420,1440,1480

1040 PRINT "Y:N ? > "

1050 CALL KEY(0,K,S):: IF sS=
0 THEN 1050

1060 IF K=89 THEN 590 ELSE I
F K=78 THEN 1010 ELSE 1050
1070 DISPLAY AT(12,1)BEEP ER
ASE ALL:"OH WELL! I DON'T WA

122 PROGRAMBITEN 91-5

NT TO PLAY WITH SUCH A SO
RE HEAD ANYWAY!!"

1080 FOR I=1 TO 1500 :: NEXT
I

1090 GOTO 1690

1100 N=1 :: FLAG=1

1110 RrR=21 CALL COLOR(2,16
,1):: GOSUB 950

1120 R=R-N :: GOTO 770

1130 TIF R=13 THEN 1210

1140 IF (R=17 OR R=13 OR R=9
OR R=5)THEN N=1 :: GOTO 760
1150 IF R>17 THEN N=R-17 ::
GOTO 760

1160 IF R>13 THEN N=R-13
GOTO 760

1170 IF R>9 THEN N=R-9 :: GO
TO 760

1180 IF R>5 THEN N=R-5 :: GO
TO 760

1190 N=R-1 :: GOTO 760

1200 GOSUBR 950

1210 DISPLAY AT(9,2)BEEP SIZ
E(28) :"ARE YOU JUST LUCKY OR
HAVE"

1220 DISPLAY AT(10,4)BEEP SI
ZE(28) :"YOU FIGURED THIS OUT
'p"

1230 GOTO 1140

1240 PRINT "NO!":"ENTER ONLY
1:2 OR 3":"I'M NOT ASLEEP Y

OU KNOW"

1250 RETURN

1260 PRINT "A JOKER HUH?!. EN
TER 1;2 OR 3":" ***OR EL
SE***“

1270 RETURN

1280 PRINT "WHAT ARE YOU? A

CLOWN PRINCE":" JUST 1;2 OR
3"

1290 RETURN

1300 PRINT "I'M BEGINNING TO
THINK" :"YOU'RE JUST PLAIN S

TUPID"

1310 RETURN

1320 PRINT "YOU'RE NOT ONLY
STUPID" :"BUT YOU'RE UGLY TOO
; PLAY":"NICE HUH? 1;2 OR 3!
R

1330 RETURN

1340 PRINT "NOT ONLY ARE YOU
STUPID AND":"UGLY BUT I BET
YOU HAVE A":"FAT HEAD TOO"
1350 RETURN

1360 PRINT "AW COME ON ! PLA

Y":"JUST ONE MORE!"

1370 RETURN

1380 PRINT "PLEASE PLAY WITH
ME":"I'M LONELY"

1390 RETURN

1400 PRINT "DONT BE A QUITTE

R":"I'LL GO EASY ON YOU"

1410 RETURN

1420 PRINT "JUST ONE MORE TI

ME" :"YOU WILL GET THE HANG O

F IT;":"YOU'LL SEE"

1430 RETURN

1440 PRINT "WILL YOU PLAY IF
I GO FIRST?":"Y:N "

1450 CALL KEY(0,K,S):: IF S=
0 THEN 1450

1460 IF K=89 THEN 1100 ELSE
IF K=78 THEN 1470 ELSE 1440
1470 GOTO 1070

1480 PRINT :: PRINT "HA! I W

ON ANYWAY!!":"THAT PROVES I'

M SMARTER THAN":"YOU PRESS
<E> IF YOU WANT":"AN EXPLANA
TION OF HOW TO DO IT ": :
1490 PRINT "PRESS <Q> IF YOU
ACTUALLY" : "WANT TO QUIT "
1500 CALL KEY(0,K,S):: IF S=
0 THEN 1500

1510 IF K=69 THEN 1630 ELSE
IF K=81 THEN 1710

1520 RETURN

1530 PRINT TAB(10);"AGAIN!!"
1540 RETURN

1550 PRINT TAB(7);"DARN I AM
GOOD"

1560 RETURN

1570 PRINT "I'M TOO SMART FO

R YOU"

1580 RETURN

1590 PRINT "I AM REALLY GETT

ING BETTER "

1600 RETURN

1610 PRINT " I AM TRULY INV
INCIBLE!"

1620 RETURN

1630 CALL CLEAR :: PRINT "TH

E FIRST PLAYER CAN'T WIN;":"

IF THE SECOND PLAYER ALWAYS"

:"TAKES 4 MINUS THE FIRST":"

PLAYER'S TAKE; THINK ABOUT":

1640 PRINT "THIS A BIT; I'M

SURE YOU":"WILL FIGURE OUT W

HY!":

1650 PRINT "DO YOU WANT TO T

RY IT?" :: GOTO 1440

1660 PRINT "ALL RIGHT; YOU W

IN!"

1670 FOR S=-1 TO -8 STEP -1
CALL SOUND(300,S,1):: NEX

T S

1680 CALL SOUND(2000,110,0,3

30, 1,550, 3,~6,0)

1690 PRINT "THIS IS NO FUN;

I'M GOING TO":" TAKE MY STON

ES AND GO HOME "

1700 FOR I=1 TO 1500 :: NEXT
I

1710 CALL CLEAR

1720 END m

PROGRAMBITEN 91-5 1.3

FROM
GRAPHIC

by Bob August, Bug News, USA

This month we are going to put a
window on the screen with a message
in the center of the window. We
stayed with ASCII 49 through ASCII
56 to make our window. You may
change this to any ASCII number you
like. Just use the formula:

((49*8) + 2048 = 2440 = »>0988)

We used a new command in the program
to drop to the next line. This is
AT or add immediate. This adds 32
to Register zero to drop down one
line. You will also note that we
only loaded register two with an
eight for the top line of our
window. As we never change register
two we don't need to load it again.
Also we could have added eight to
register zero each time instead of
using the hex number for the pattern
table. In our first loop (aloop) we
used CI RO,227+26 to show you that
assembly will accept the plus or
minus and do the calculation. We
could have used CI RO,253 and -
obtained the same result.

The Extended Basic version of our
window program is listed below:

100 ! Lesson Number 6

110 CALL CHAR(49,"FFFFCOCOCF
CFCCCC")! LEFT TOP CORNER
120 CALL CHAR(50,"FFFF0000FF
FF0000")! TOP LINE

130 CALL CHAR(51,"FFFF0303F3
F33333")! RIGHT TOP CORNER

kkkkkkhkkkkkkhkhkkkhkhkkkkhkhkkkkkkkkkkkhkkk
* BASIC TO ASSEMBLY Lesson Number 6 *
KhhA AR KRAKAA KAk hkhkkkkhhkkhhkkhkhhhkhhkkkkk
*

DEF
REF

START

VSBW, VMBW, KSCAN
*

WRKSP BSS 32

SAV11 BSS 2

*

TOP DATA
BOTTOM DATA
LTCORN DATA
RTCORN DATA

>FFFF,>0000, >FFFF, >0000
>0000, >FFFF, >0000, >FFFF
>FFFF,>CO0CO, >CFCF, »CCCC
>FFFF,>»0303,>F3F3,>3333

14

BASTIC TO ASSEMBLY

1 MODE

140 CALL CHAR(52,"CCCCCCCCCC
ccccece") ! LEFT SIDE

150 CALL CHAR(53,"3333333333
333333")! RIGHT SIDE

160 CALL CHAR(54,"CCCCCFCFCO
COFFFF")! LEFT BOTTOM CORNER
170 CALL CHAR(55,"0000FFFF00
OOFFFF")! BOTTOM LINE

180 CALL CHAR(56,"3333F3F303
O3FFFF")! RIGHT BOTTOM CORNE
R

190 GOSUB 320

200 CALL HCHAR(8,3,49)

210 CALL HCHAR(8,4,50,26)
220 CALL HCHAR(8,30,51)
230 CALL VCHAR(9,3,52,3)
240 CALL VCHAR(9,30,53,3)
250 CALL HCHAR(12,3,54)
260 CALL HCHAR(12,4,55,26)
270 CALL HCHAR(12,30,56)
280 GOSUB 340

290 CALL KEY(O,K,S):: IF s=0
THEN 290

300 IF K<>13 THEN 290

310 STOP

320 CALL CLEAR

330 RETURN

340 DISPLAY AT(10,3)SIZE(23)
:"PRESS ENTER KEY TO QUIT"
350 RETURN

360 END

Both the above program and the
assembly program will display a
window in the middle of the screen
with the message in the center of
the window.

HAPPY ASSEMBLING!

Entry point of progranm
Utilities used in program

Workspace buffer
Save return address buffer

Top line of window
Bottom line of window
Left top corner

Right top corner

PROGRAMBITEN 91-5

LBCORN DATA >CCCC,>CFCF,>COCO,>FFFF
RBCORN DATA »>3333,>F3F3,>0303,>FFFF
DATA >CCCC,>CCCC,>CCCC,>CCCC
DATA >3333,>3333,>3333,>3333

LSIDE
RSIDE

*

MSG1

*

TEXT

EVEN
*

* Start of program

*

START MOV R11,@SAV11
LWPI WRKSP
BL @CLEAR

*

* Put window on screen
*

LI RO0,>0988

'"PRESS ENTER KEY TO QUIT'

LI R1,TOP

LI R2,8

BLWP @VMBW

LI RO,227

LI R1,>3100
ALOOP BLWP @VSBW

INC RO

CI RO,227+26

JNE ALOOP
*

LI RO,>0990

LI R1,BOTTOM

BLWP @VMBW

LI RO,355

LI R1,>3200
BLOOP BLWP @VSBW

INC RO

CI RO,355+26

JNE BLOOP

LI RO,>0998

LI R1,LTCORN
BLWP @VMBW

LI RO,226

LI R1,>3300

BLWP @VSBW

LI RO,>09A0
LI R1,RTCORN
BLWP @VMBW
LI RO,253
LI R1,>3400
BLWP @VSBW

LI RO,>09A8

LI R1,LBCORN
BLWP @VMBW

LI RO,354

LI R1,>3500

BLWP @VSBW

LI RO,>09BO
LI R1,RBCORN
BLWP @VMBW

Left bottom corner
Right bottom corner
Left side of window
right side of window

Prompt to quit

Make sure we start on even byte

Save return address
Load the workspace
GOSUB CLEAR to Clear the screen

Load pattern table address for a one
Load top line data

load pattern descripter table

Write it to VDP

Load screen location (Row 8, Col. 4)
Load ASCII 49 or a one

Write it to the screen

Add one to Register zero

Compare for end of line or 253

Jump if not equal to ALOOP or go on.

Load pattern table address for a two
Load bottom line data

Write it to VDP

Load screen location (Row 12, Col. 4)
Load ASCII 50 or a two

Write- it to the screen

Add one to Register zero

Compare for end of line or 381

Junp if not equal to BLOOP else go on.

Load pattern table address for a three
Load left top corner data

write it to VDP

Load screen location (Row 8, Col. 3)
Load ASCII 51 or a three

Write it to the screen

Load pattern table address for a four
Load right top corner data

Write it to VDP

Load screen location (Row 8, Col. 30)
Load ASCII 52 or a four

Write it to the screen

Load pattern table address for a five
Load left bottom corner data

Write it to VDP

Load screen location (Row 12, Col. 3)
Load ASCII 53 or a five

Write it to the screen

Load pattern table address for a six
Load right bottom corner data
Write it to VDP

PROGRAMBITEN 91-5 15

LI
LI
BLWP

LI
LI
BLWP
LI
LI
BLWP
AT
CI
JNE

CLOOP

LI
LI
BLWP
LI
LI
BLWP
AI
CI
JNE

DLOOP

*

BL
DATA

Call

* ¥ ¥

CLR
CLR
BLWP
CB
JEQ
MOV
CI
JNE
CLR
MOV
BLWP

ELOOP

*

RO,381
R1,>3600
@VSBW

RO,>09B8
R1,LSIDE
@VMBW
RO, 258
R1,>3700
@VSBW
RO, 32
RO, 258496
CLOOP

RO,>09C0O
R1,RSIDE
@VMBW
RO, 285
R1,>3800
@VSBW
RO, 32
RO, 285+96
DLOOP

Put message on screen

@DISPLY
292,M56G1,23

key routine

@>8374
@>837C
@KSCAN
@>837C,@>20
ELOOP
@>8375,R0
RO,>0D
ELOOP
@>837C
@SAV11,R11
@0

* Clear screen routine

*

CLEAR LI
CLR
BLWP
INC
CI
JLE
RT

FLOOP

*

R1,>2000
RO
@VSBW

RO
RO,767
FLOOP

* Display at routine

*

DISPLY MOV
MOV
MOV
BLWP
RT

END

16

*R11+,RO
*R11+,R1
*R11+,R2
@VMBW

START

Load screen location (Row 12, Col. 30)
Load ASCII 54 or a six
Write it to the screen

Load pattern table address for a seven
Load left side data

Write it to VDP

Load screen location (Row 9, Col. 3)
Load ASCII 55 or a seven

Write it to the screen

Add 32 to Register zero for next line
Compare for three lines or 254

Junp if not equal to CLOOP else go on.

Load pattern table address for an eight
Load right side data

Write it to VDP

Load screen location (Row 9, Col. 30)
Load ASCII 56 or an eight

Write it to the screen

Add 32 to Register zero for next line
Compare for three lines or 381

Jump if not equal to DLOOP else go on.

Gosub to display message at Row 10, Col. 5
Screen location, Message, Length of message

Clear to zero for CALL KEY(0,K,S)
Clear status to zero
CALL KEY(O,K,S)
Check for key press
IF S=0 THEN ELOOP
Move Key press to register zero
Compare to 13 or enter key

If not enter key goto ELOOQP

Clear status to zero

Put return address in register 11
Quit (FCTN =)

(may not work, ed. note)

Load Register one with space

Clear Register zero to zero

Write blank space to screen

Add one to register zero

Compare contents to 767

If less then 767 goto FLOOP

Return to next line of calling area

Put screen location into Register zero
Put message into Register one

Put length into Register two

Write it to the screen

Retrun to next line of calling area

End program with auto start

PROGRAMBITEN 91-5

(addr.>0020 is >0460, ed.

note)

BEGINNER ASSEMBLER - 5

#SPIRITED

by Mack McCormick, USA

Definition: Any shape or color. Can
occupy screen positions independent
of any character already present.
Once set into motion, can move inde-
pendently of direct program control.
You can magnify or make double size.

How they can be used: Up to 32
sprites on the screen at any one
time. Can be used in GRAPHICS and
MULTICOLOR modes. Also can be used
in BIT MAP mode but not the automa-
tic motion feature. Sprites cannot
be used in the TEXT mnode.

COLOR DRAW
(frén PB 84-5.18)
90 !COLOR-DRAW. Ett program
foer lek med faerger
95 !Ur The Smart Programmer
februari 1984
100 CALL CLEAR :: CALL SCREE
N(2):: K=2 :: W=32 :: FOR 8=
88 TO 136 STEP 8 :: CALL CHA
R(S,"FFFFFFFFFFFFFFFFO0") : :
NEXT S
110 CALL CHAR(42,"00003C3C3C
3C"):: CALL COLOR(1,14,2,8,1
3,3,9,4,5,10,6,8,11,7,9,12,1
0,11,13,12,14,14,15,16)
120 FOR S=88 TO 136 STEP 8 :
: DISPLAY AT(1,K):CHRS(S)&"
"&CHRS(S+1):: K=K+4 :: NEXT
S
130 CALL HCHAR(2,1,32,736)::
CALL SPRITE(#1,42,16,17,121
}:: ¥=3 :: X=16 :: CALL SOUN
D(-100,660,9)
140 CALL JOYST(1,K,S):: X=X+
SGN(K):: Y=Y-SGN(S):: IF Y>2
4 THEN Y=1 ELSE IF Y<1 THEN
Y=24
150 IF X>32 THEN X=1 ELSE IF
X<1 THEN X=32
160 CALL LOCATE(#1,Y*8-7,X*8
-T7):: CALL KEY(1,K,S):: IF S
=0 THEN 140 ELSE IF Y>1 THEN
CALL SOUND(-90,-2,15):: CAL
L HCHAR(Y,X,W):: GOTO 140
170 IF K=19 THEN 130 ELSE CA
LL GCHAR(Y,X,W):: CALL SOUND
(-90,880,7):: CALL HCHAR(1,2
,W):: GOTO 140 =

SPRITES

There are three tables which contain
all the information needed to use
sprites:

1. SPRITE ATTRIBUTE TABLE

a. Sprite Position
b. Sprite Color

2. SPRITE DESCRIPTOR TABLE
a. Sprite Pattern Identifier
b. Specify magnified or double
sized sprites.

3. SPRITE MOTION TABLE

a. Define X and Y velocities
of Sprites.

DEFAULT LOCATIONS OF SPRITE TABLES

Table VDP address
SPRITE ATTRIBUTE TABLE »0300
SPRITE DESCRIPTOR TABLE >0400
SPRITE MOTION TABLE »0780

Sprites are numbered from 0 to 31.
Here's how the screen is defined for
Sprites:

Columns are labeled starting from
the left from 0 to 255 (>00 to >FF).
Rows are numbered from top left, the
first row is numbered 256 (>100),
followed by the numbers 0 to 190 (>0
to >BE). Each screen location de-
fined in this manner is referred to
as a pixel. A pixel is the smallest
area of the screen you can turn on
or off. Here's the way it looks:
Pixel 1 is in row >100 column >02.
P4 is in row >BE column »>01.

Here are the formulas to convert row
and column locations to pixel loca-
tions:

GRAPHIC TO PIXEL CONVERSIONS

GRAPHIC ROW TO PIXEL ROW
GK*8-7=PR _

GRAPHIC COLUMN TO PIXEL COLUMN
GC*8-T7=PC

PROGRAMBITEN 91-5 1.7

PIXEL ROW TO GRAPHIC ROW
INT[(PR+7) /8]=GR

PIXEL COLUMN TO GRAPHIC COLUMN
INT[(PC+7) /8]=GC

SPRITE ATTRIBUTE TABLE

Begins at VDP »>0300 by default.
Contains the present position of
sprites and their colors. Each
sprite takes up four bytes in the
table. The first byte is the row or
Y position of the sprite. The second
byte is the column or X position.
The third byte references the
pattern of the sprite as to where it
is located in the Sprite Descriptor
Table. The fourth byte is the early
clock attribute and also codes for
the color of the sprite.

When the computer moves sprites it
updates the information in the
sprite attribute table. The more
sprites it has to update the longer
it takes to execute the program. To
shorten this time place a value of
>D0 as the Y location of the lowest
numbered non-moving sprite. Always
let the final unused sprite be unde-
fined by specifying the Y location
as »DO. .

The third byte references a pattern
in the Pattern Descriptor Table. Can
range from >00 to »FF. For exanmple
if the third byte contained >80 it
would point to »>0400 through »>0407
in the Sprite Descriptor Table.

The forth byte controls the early
clock and color. The first four
bits control the early clock. If
the last bit (3) is reset to zero
the early clock is off and the loca-
tion of the sprite is said to be
it's upper left hand corner. This
means the sprite will fade in and
out on the right hand side of the
screen. If bit 3 is on the sprites
location is shifted 32 pixels to the
left. The sprite can then fade in
and out from the left side of the
screen.

Bits 4-7 of byte four contain the
color. Same as other VDP colors 0
to >F.

Here's an exanple Sprite Attribute:

SAL DATA »3356,>8001 Sprite 0
DATA >A828,>810F Sprite 1
DATA >D0 - 3rd Sprite Undef
// I
Y X / color
pattern

SPRITE DESCRIPTOR TABLE

Just like the pattern descriptor
table for characters. Usually begins
at >0400. Addresses >0400 through
>0407 are defined as sprite pattern
>80.

You can also make sprites magnified
or double sized by writing a value
to the two least significant bits of
VDP register 1.

SPRITE MOTION TABLE

Describes the X and Y velocities of
each sprite. This table begins at
»>0780. Before a sprite can be
placed into motion several condi-
tiong must be met. Your program must
allow interrupts using LIMI 2 but
before accessing VDP RAM you must
disable interrupts with a LIMI 0.
You must indicate how many sprites
will be in motion by placing a value
at CPU address »837A. For exanple if
sprites 2, 5, and 7 are in motion
you must place an >8 at address
»837A which will allow motion of 0
through 7. A description of the
motion must be placed in the Sprite
Motion Table. Each sprite takes up
four bytes in the table. The first
byte is the Y velocity, the second
byte is the X velocity. The third
and fourth bytes are used by the
interrupt routines, just be sure you
leave space for them. The following
are allowed as values for X and Y
velocities:

A value of >01 will cause the sprite
to move one pixel every 16 VDP
interrupts. About once every 16/60
of a second.

A thought: Have you ever seen a
screen dump program that would dump
sprites? It could be done by obtain-
ing their location and pattern and
converting to printer bit graphics.
Have fun!

is PROGRAMBITEN 91-5

khkkkkhkkhkkhkhkhkkhhkhkhhkhkkkhkhkhhkkhkhkkhhhkhkhhkhkkhkhkkhkhkkkhkkkhkkkkkk

* CALL SPRITE, PROGRAM PLACES A HELICOPTER *
* SPRITE IN MOTION BY ENABLING INTERRUPTS. PRESS ANY *
* KEY TO ALTER MAGNIFICATION, BY MACK MCCORMICK *
Fokkkkkkdkokkkddkkdkkkokdkkkddkokdkkkkdkkhkokkdekkdkkkkkhdkkkhdkkkhk
DEF START
REF VMBW,VWTR,KSCAN

HELI DATA >007F,>0000,>0107,>0EOE HELICOPTER PATTERN DESCRIPTION
DATA >1EBE,>FFBF,>0F07,>020F BLOCK 2

DATA >O0OFF,>8080,>COF8,>04C2 3
DATA >DACA,>FEFC,>F8EOQ, >40F8 4
SDATA DATA >7080,>8008 INITIAL SPRITE DATA
DATA >D000 DO PREVENTS GHOST SPRITES
*
SPEED DATA >OAOF,>0000 SPRITE SPEED FOR AUTO MOTION
STATUS EQU »837C GPL STATUS BYTE
VDP DATA >01E0 INITIAL VALUE OF VDP REGISTER 1
MYREG EQU 8300 MYREG IN 16 BIT HIGH SPEED AREA OF MEMORY
*
START LWPI MYREG
CLR @>8375 KEYBOARD DEVICE = 0. SCAN ALL.
MOV @VDP,R6
LI RO,>0400 LOAD (BASE ADDRESS OF SPRITE DESCRIPTOR TABLE)
LI RL,HELI SPRITE
LI R2,32 DESCRIPTOR
BLWP @VMBW TABLE
*
LI RO,>0300 LOAD (BASE ADDRESS OF SPRITE ATTRIBUTE TABLE)
LI R1,SDATA SPRITE
LI R2,6 ATTRIBUTE
BLWP @VMBW TABLE
*
LI RO,>0780 LOAD - (BASE ADDRESS OF SPRITE MOTION TABLE)
LI R1,SPEED SPRITE
LI R2,4 MOTION
BLWP @VMBW TABLE

LI R1,>0100
MOVB R1,@>837A ONE SPRITE IN MOTION

LOOP CLR @STATUS
BLWP @KSCAN
MOVB @STATUS,@STATUS HAS KEY BEEN PRESSED?

LIMI 2 ENABLE INTERRUPTS FOR AUTO MOTION
LIMI O DISABLE INTERRUPTS SO VDP IS NOT AFFECTED ON READ/WR
JEQ LOOP
*
CHECK INC R6 R6 IS USED AS A COUNTER TO KEEP
CI R6,>01E4 TRACK OF WHICH MAGNIFICATION
JLT GO LEVEL (1 TO 4) WE ARE ON.
MOV @VDP,R6
*
GO MOV R6,RO LOAD RO WITH DATA TO LOAD INTO VDP R1
BLWP @VWTR CHANGE THE VDP REGISTER
B @LOOP
END
* FOR EXTRA PRACTICE ADD A ROUTINE THAT SHOWS THE X AND Y POSITION OF THE SPRITE
* ON THE SCREEN AS IT MOVES. HINT: Y LOCATION IS 1ST BYTE IN SPRITE ATTRIBUTE
* LIST. X SECOND BYTE. READ THEM, CONVERT TO ASCII DECIMAL AND REDISPLAY WITH
* APPROPRIATE TEXT. WHO'LL BE FIRST? ?

PROGRAMBITEN 91-5 i<

HYBRIDPROGRAM XB OCH AL

av Jan Alexandersson

Det finns flera sitt att gdémma ett
assemblerprogram i ett Extended
Basic program. Som exempel anvénds
har BUBBLE/O frdn PB 91-2 men du kan
vdlja en egen fil. Jag ska hir be-
skriva tre olika program som ordnar
omvandlingen:

- ALSAVE av Todd Kaplan som &r
public domain (se Micropendium sep
90 sid 17)

- SYSTEX av Barry Boone (finns pd
skivan till EASYMUSIC i program-
banken)

- LOADASMBAS av Borje H4ll (se PB
84-1)

ALSAVE AV TODD KAPLAN

Du mdste ha filen ALSAVE for att
kunna gdéra omvandlingen. S&nd en
skiva och frankerat kuvert sid sidnder
jag filen till dig. Du gdr omvand-
lingen pa féljande sitt:

1. Knappa in programmet ALLOAD;

10 CALL INIT :: CALL LOAD
(8196,63,248) :: CALL LOAD
(16376,65,76,83,65,86,69,255,48)
:: CALL LINK("ALSAVE")

2. Spara det som SAVE DSK2.ALLOADM,
MERGE

3. NEW

4. CALL INIT

5. CALL LOAD("DSK2.BUBBLE/O")

6. CALL LOAD("DSK2.ALSAVE")

7. CALL LINK("SAVE")

8. 100 CALL LINK("BUBBLE")

120 ! Programmet &r skrivet
av programmet

130 ! LOADASMBAS

140 ! LOADASMBAS l&ser en as
sembler OBJEKT-

150 ! kod och gdér om objektk
odens data till

9. MERGE DSK2.ALLOADM

10.SAVE DSK2.BUBBLE/ALS

SYSTEX AV BARRY BOONE

Du gdér omvandlingen pad fdljande
sdtt:

1. CALL INIT

2. CALL LOAD("DSK2.BUBBLE/O")
3. OLD DSK2.SYSTEX

4. RUN

5. Y £6r YES

6. CALL LINK("SYSTEX")

7. 100 CALL LINK("BUBBLE")

8. SAVE DSK2.BUBBLE/SYS

LOADASMBAS AV BORJE HALL

Detta kriver AORG och att BSS ej an-
viands. Som exempel anvdnder jag hér
en modifierad version av BUBBLE/SXB
frdn PB 91-2 sid 12 langst ned till
héger. Liagg till en rad foére COPY
med AORG >A000 och &ndra COPY till
COPY "DSK2.MAIN/BH" och spara den
som BUBBLE/SBH. Andra filen MAIN
genom att anvdnda RS (Replace
String): /BSS »20/DATA 0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0/. Spara detta
som MAIN/BH. Assemblera sedan
BUBBLE/SBH till BUBBLE/OBH.
LOADASMBAS ska sedan omvandla
BUBBLE/OBH till DSK1.MERGE. Skriv
sedan NEW och MERGE DSK1.MERGE. Lagg
till en rad pd slutet: 500 CALL
LINK("BUBBLE") och spara resultatet
som BUBBLE/BH.

160 ! CALL LOAD-satser.

170 ! LOADASMBAS a&r skrivet
av

180 ! Borje Hall

220 CALL INIT

240 ! * Ladda assemblerprogr
ammet

20 PROGRAMBITEN 91-5

260 CALL LOAD(-24576,60,126,
207,223,255,255,126,60,243,5
1,160,168,1,218,2,13,2,113)

270 CALL LOAD(-24558,2,165,2
,214,2,225,0,0,0,0,0,0,0,0,0
;0;0,0,0,0,0,0)

280 CALL LOAD(-24536,0,
+0,0,0,0,0,0,0,0:,0,0,0,
12,224,160,26)

290 CALL LOAD(-24514,6,160,1
61,14,2,0,3,148,2,1,160,8,2,
2,0,2,4,32,32,36,2,0)

300 CALL LOAD(-24492,13,0,2,
1,160,0,2,2,0,8,4,32,32,36,4
»192,208,96,160,11,4,32)

310 CALL LOAD(-24470,32,32,5
(128,2,128,3,0,22,250,208,96
,160,10,2,2,160,12,192,50,19
2,0)

320 CALL LOAD(-24448,19,35,4
.32,32,32,16,250,0,0,0,0,0,0
#0505 00500004

330 CALL LOAD(-24426,
+0.0,0,0,0,0,0,0,0,0,
,0,0,0,0)

340 CALL LOAD(-24404,0,0
.0,0,0,0,0,0,0,0,0,0,0,0,

00,0
0,0,0

0,0
0,0

70 ¢ 050:0)

350 CALL LOAD(-24382,0,0,0,
,0,0,4,192,2,1,160,136,2,2,
,32,4,32,32,44,2,0)

360 CALL LOAD(-24360,0,32,2,
1,160,168,2,2,0,32,4,32,32,4
4,2,32,255,224,4,32,32,36)
370 CALL LOAD(-24338,2,32,0,
64 ;:2.128:3,;0.,26,245; 2,0, 2,22
4,2,1,160,136,4,32,32,36)
380 CALL LOAD(-24316,3,0,0,2
,3,0,0,0,16,221,2,0,3,14,4,3
2,32,48,2,0,4,1)

390 CALL LOAD(-24294,4,32,32
,48,2,0,7,243,4,32,32,48,2,0
,1,224,4,32,32,48,4,91)

410 ! * Uppdatera REF/DEF-ta
bellen

420 ! * Referenser

430 ! * BUBBLE

450 CALL LOAD(16376,66,85,66
,66,76,69,160,58)

470 ! * Uppdatera pekaren ti
11 REF/DEF-tabellen

490 CALL LOAD(8196,63,248)
500 CALL LINK("BUBBLE")

0
0

GENEVE ARTICLES
by Don Jones, Chicago UG, USA

Well, I have finally compiled ALL
that I have in DV/80 format. I have
also found that I have exactly 6
which I no longer have the DV/80
files for. This includes my first
Geneve Support Article, which was
written for the 12/31/87 issue of
this newsletter. The other 5 of the
6 missing articles are all from the
year 1988. I have all of the others
available for the following years.

I have "archived" them by year, and
they require 1011 sectors of disk
storage space. This means that if
you only have SS/SD drives, you will
require 4 disks to store them. If
you have DS/SD, you will require 2
disks. If you have DS/DD, only one
disk will be required. (Don't for-
get, we are talking about approxi-
mately 30 articles!) Jim Baird our
Geneve librarian will have these
disks available for purchase either
at the next meeting or by mail. The
cost for them all will be a $10.00
donation to our group. You may be
asking what am I going to do about

the 6 articles which are currently
not in DV/80 format. As I said in
my last article, I intend on return-
ing them into DV/80 format >OR< I
will simply provide a hard copy of
these articles to those who purchase
the disks. (If you are one of the
few members who have already pur-
chased these articles prior to April
15, you won't have the missing 6 and
a couple of other articles which I
did not initially have access to.

If you write to Jim and inform him
of who you are, I will ask him to
send you the completed package.)

One last thing: By now, it should be
fully apparent to my readers that my
stuff is really directed towards the
non-technical, beginner. If you
want something more advanced, I
suggest a subscription to Beery
Miller's "diskazine,: >9640 News<.
It is very well done and it is defi-
nitely worth your patronage. Also,
don't forget about >MICROpendium
Magazine<. They have a lot of in-
teresting and fine articles on
Geneve and her older brother, the
4a.

PROGRAMBITEN 91-5 21

PHM -—

av Jan Alexandersson

PHM3000
PHM3001
PHM3002
PHM3003
PHM3004
PHM3005
PHM3006
PHM3007
PHM3008
PHM3009
PHM3010
PHM3011
PHM3012
PHM3013
PHM3014
PHM3015
PHM3016
PHM3018
PHM3020
PHM3021
PHM3022
PHM3023
PHM3024
PHM3025
PHM3026
PHM3027
PHM3028
PHM3029
PHM3030
PHM3031
PHM3032
PHM3033
PHM3034
PHM3035
PHM3036
PHM3037
PHM3038
PHM3039
PHM3040
PHM3041
PHM3042
PHM3043
PHM3044
PHM3045
PHM3046
PHM3047
PHM3048
PHM3049
PHM3050
PHM3051
PHM3052
PHM3053
PHM3054
PHM3055
PHM3056
PHM3057
PHM3058

22

DIAGNOSTIC
DEMOSTRATION
EARLY LEARNING
BEGINNERS GRAMM.
NUMBER MAGIC
VIDEO GRAPHS
HOME FINANC.DEC.
H.BUDGET MANEGEM
CHESS

FOOTBALL
PHYSICAL FITNESS
SPEECH EDITOR
SECURIT.ANALYSIS
PERS.RECORD KEEP
STATISTICS

EARLY READING
TAX/INVESTM.REC
VIDEO GAMES I
MUSIC MAKER
WEIGHT CONTROL.N
PERS.REAL ESTATE
HUNT THE WUMPAS
SOCCER

MIND CHALLENGERS
EXTENDED BASIC
ADD AND SUB I
ADD AND SUB II
MULTIPLICAT. I
A-MAZ-ING
ATTACK

BLASTO

BLACK JACK/POKER
HUSTLE
TERM.EMULATOR II
ZERO ZAP

HANGMAN

CONNECT FOUR
YAHTZEE

TI LOGO
ADVENTURE
TUNNELS OF DOOM
READING FUN
PERS.REPORT GEN.
ELECTRICAL E.LIB
READING ON
READING ROUNDUP
READING RALLY
DIVISION I
NUMERATION I
NUMERATION ITI
TOMBSTONE CITY
TI INVAIDERS

CAR WARS
EDITOR/ASSEMBLER
ALPINER

MUNCHMAN

MINI MEMORY

OP
uv
UB
UB
UB
GR
HA
HA
SP
SP
uv
MU
HA
HA
HA
UB
HA
SP
MU
uv
HA
SP
SP
SP
SK
UB
UB
UB
SP
SP
SP
SP
SP
SK
SP
SP
SP
SP
SK
SP
SP
UB
HA
TE
UB
UB
UB
UB
UB
UB
SP
SP
SP
SK
SP
SP
SK

PHM3059
PHM3060
PHM3061
PHM3062
PHM3064
PHM3065
PHM3066
PHM3067
PHM3069
PHM3082
PHM3083
PHM3084
PHM3085
PHM3086
PHM3087
PHM3088
PHM3089
PHM30S90
PHM3091
PHM3092
PHM3093
PHM3094
PHM3095
PHM3096
PHM3097
PHM3098
PHM3099
PHM3100
PHM3101
PHM3109
PHM3110
PHM3111
PHM3112
PHM3113
PHM3114
PHM3115
PHM3116
PHM3117
PHM3118
PHM3119
PHM3122
PHM3131
PHM3144
PHM3145
PHM3146
PHM3148
PHM3149
PHM3150
PHM3151
PHM3152
PHM3153
PHM3154
PHM3155
PHM3156
PHM3157
PHM3158
PHM3159

PROGRAMBITEN 91-5

MODULER FOR 99/4A

SCH.SPELLING-L3
SCH.SPELLING-L4
SCH.SPELLING-L5
SCH.SPELLING-L6
TOUCH TYPING TUT
ENGLISH TRAINER
INDIVID ACCOUNT
OTHELLO

EARLY LEARNING
READING FLIGHT
COMP.MATH GAME
COMP .MATH .GAME
COMP .MATH.GAME
COMP .MATH.GAME
COMP.MATH.GAME
COMP.MATH GAME
DISK MANAGER 2
ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION
INTEGERS
FRACTIONS
DECIMALS
PERCENTS

NUMBER READINESS
LAW OF ARITMETIC
EQUATIONS
MEASUREMENT FORM
TI LOGO II
CHRISHOLM TRAIL
TI WRITER

PARSEC

MULTIPLAN
ALTGATOR MIX
ALTEN ADDITION
DEMOLITION DIV
DRAGON MIX

MINUS MISSION
METEOR MULTIPLIC
PLATO INTERPRETE
MOONMINE

LOGO LEARNING
SNEGGIT
MUNCHMOBILE
MBX:BASEBALL
MBX:SPACE BANDIT
MBX: SEWERMANIA
MBX:BIGFOOT
MBX:METEOR BELT
MBX: SUPERFLY
MBX:TURTLE ADVEN
MB¥:I'M HIDING
MBX :HONEY HUNT
MBX: SOUND TRACK
MASH '
CHOPLIFTER

YU W N

UB
UB
UB
UB
uv
UB
HA
SP
UB
UB
UB
UB
UB
UB
UB
UB
OP
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
SK
SP
HA
SP
HA
UB
UB
UB
UB
UB
UB
uv
SP
uv
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP

PHM3168 TREASURE ISLAND SP
PHM3169 WORD INVATIONS UB

PHM3177 FACE MAKER UB
PHM3178 STORY MACHINE UB
PHM3185 WORD READER UB
PHM3189 PIRATE'S ISLAND SP
PHM3194 JAWBREAKER SP
PHM3197 SLYMOIDS SP
PHM3212 SCRABBLE SP
PHM3213 TI-CALC HA
PHM3214 NUMBER GULPER UB
PHM3215 HIDE AND SEEK SP
PHM3219 DEMON ATTACK SP
PHM3220 MICRO SURGEON SP
PHM3222 FATHOM SP
PHM3224 MOONSWEEPER SP
PHM3225 STARTREK SP
PHM3226 BUCK ROGERS SP
PHM3227 CONGO BONGO SP
PHM3229 HOPPER SP
PHM3233 BURGERTIME SPm

KONTROLLSTFFRA

100 ! Generator for kontroll
siffra/postgiro/personnummer
140 Thdkkdkhkkkkkkhkkkkkkkkkkkkx
160 ! Tiomodulsmetoden

180 ! 23 692

190 ! 21 212 Borja fréan
héger med 2121 osv.

200 | —==——- 2%2=4, 1*9
=9, 2*6=12 ger 1 o. 2 .
210 ! 431294 = 23 Siffrorn
adderas var fér sig (12=1 oc
h 2)

220 ! Subtrahera ndrmast hdg
re tiotal

230 ! 30 - 23 = 7

240 ! Om summan blir jamt de
lbar med tio &r siffran O
260 !***********************
280 DISPLAY AT(1,1)ERASE ALL
:"# KONTROLLSIFFERGENERATOR

#I‘

290 DISPLAY AT(3,1):" Ange
siffrorna i numret eller
talet i en foljd, utan
mellanrum eller avdel

ade med tecken."
300 DISPLAY AT(21,1):"Max 11

giffror ENT ra
derar allt = for
exit"
310 c=1

320 FOR B=9 TO 19 STEP 2
330 ACCEPT AT(B,C)VALIDATE(D

IGIT,"=")BEEP SIZE(-11):T$
340 IF TS$="" THEN GOTO 280 !
Radera allt

350 IF TS="=" THEN END 770

GOTO 280 !Exit
360 GOSUB 490 ! Utrakning
370 ! Display av kontrollsif
fran
380 DISPLAY AT(B,C+S)SIZE(-2
) :"=";STRS(Z)
390 NEXT B
400 IF C=1 THEN C=15 ELSE C=
1 ! Kolumnandring
410 ! Radera en kolumn
420 FOR CLR=9 TO 19 STEP 2
430 DISPLAY AT(CLR,C)SIZE(-1
31) .
440 NEXT CLR
450 GOTO 320
4'70 1***********************
490 ! Utrakning
500 S=LEN(TS$)! Langden av ta
let
510 P=0 ! Summan
520 L=10 ! Ger L=2 i £fo
rsta loopen
530 FOR I=0 TO S-1 ! Loop so
m multiplicerar varannan sif
fra i talet med 2 resp. 1
540 IF L=2 THEN L=1 ELSE L=2
550 TAL=VAL(SEGS(TS$,S-I,1))!
TAL &r resp. siffra i talet
560 P=P+L*TAL !

P 4r den acc. summan
570 IF L=2 AND TAL>4 THEN P=
P-9 ! Justerar for TAL 10 el
ler hoégre
580 NEXT I
590 Z=(INT(P/10)+1)*10-P !

7 ar kontrollsiffran
600 IF Z=10 THEN Z=0
610 RETURN]

90 REM DECIMAL-KOMMA ENSAT
92 REM FRAN PB 84-5.13

95 REM ANVEND RAD 230 ELLER
96 REM 330 SOM RAD 130

97 REM TALET X SKRIVS MED

98 REM DECIMALKOMMAT ENSAT
100 Cc=10

110 FOR I=1 TO 10

120 READ X

130 PRINT TAB(C-LEN(STRS (INT
(ABS (X)))) —(X<1)+(X<0)+((X<0
)*(X>-1))) ;X

140 NEXT I

150 DATA 3,0.354,-2.4,120,55
55,~300.7,.006;100;56;9;-345
.09

160 END
230 PRINT TAB(C-LEN(STRS(INT
(ABS (X)))) —(X<1)+(X<0)+((X<O

VELED-~L))) ER
330 PRINT TAB(C-POS (STRS (X) &
||-||’||.||'1)_(X<0});X]

PROGRAMBITEN 91-5 23

TIPS FROM TIGERCUB #44

Copyright 1987

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Thanks to Steve Chapman
and Bill Wallbank of Stone &
Webster Engineering Corp.
TIUG for this one. If V=21
you are in Extended Basic,
otherwise you are in Basic.
I am not sure it will work
with all consoles and
modules. -

100 RANDOMIZE (0)
110 V=INT(RND*100)

How «c¢an you input a blank
(CHRS 32) with ACCEPT AT? As
far as I know, you can't.
With LINPUT, just hit the
space bar, and with INPUT,

type " ". But with ACCEPT AT
the space bar gives a null
string and " " gives " " |

However, you can code around
I =

X$=CHR$ (34) &CHRS (32) &CHRS (32
}:: ACCEPT AT(1,1):T$:: IF
T$=X$ THEN T$=CHRS$(32)

And, to clear up the
puzzling behavior of the
"quote marks" -

100 CALL CHARPAT(34,CHS):: C
ALL CHAR(35,CHS) !written by
Jim Peterson
110 DISPLAY AT(1,7)ERASE ALL
:"THE # PUZZLE":" You can't
enter PRINT # or PRINT ### -
the computer demands an
even number of #."
120 DISPLAY AT(5,1):"1 PRINT
!prints a null string (n
othing)":"2 PRINT #*# !print
s *"
130 DISPLAY AT(8,1):"3 PRINT
!prints #":"4 PRINT
*## !crashes as STRING-NUM
BER MISMATCH"
140 DISPLAY AT(11,1):"5 PRIN
T ##**## !crashes as SYNTAX
ERROR"
150 DISPLAY AT(13,1):"6 PRIN
T ###### !prints ##":"7 PRIN
T ###*### !prints #*#":"8 PR
INT ###**### 'print #F**#"
160 DISPLAY AT(16,1):"9 PRIN

T ######## !prints ###":"10
PRINT ####*#### !crashes as
STRING-NUMBER MISMATCH"
170 DISPLAY AT(19,1):"11 PRI
NT ####**#### !crashes as SY
NTAX ERROR":"12 PRINT ######
HHHE HE#E"
180 DISPLAY AT(22,1):"13 PRI
NT H#####*#E#44 ' #H#+##":"14 P
RINT #####x~$4444) >+ H##"
190 DISPLAY AT(24,1):"TRY IT
! LINE NO.(1-14)?" :: ACCEPT
AT (24,25)VALIDATE (DIGIT)SIZ
E(2)BEEP:LN IF LN<1 OR LN
>14 THEN 190
200 CALL CLEAR :: ON LN GOSU
B 230,240,250,260,280,290,30
0,310,320,330,340,350,360,37
0
210 PRINT :;:;:"Press any ke
y‘l
220 CALL KEY(0,K,S):: IF S=0
THEN 220 ELSE 110

230 PRINT "" :: RETURN

240 PRINT "*" :: RETURN

250 PRINT """" :: RETURN
260 PRINT ""*"" lcrashes as

STRING-NUMBER MISMATCH - the
* is misinterpreted as a mu
ltiplier!Same with +,-,/

270 !with anything else, inc
luding numerals, crashes as
SYNTAX ERROR - but inserts a
space before the character!

280 PRINT ""*x"" :: lcrashes
290 PRINT """""" :: RETURN
300 PRINT """x""" :: RETURN
310 PRINT """*xuun" .. RETURN
320 PRINT "umuwmwnnn .2 RETURN
330 PRINT """"x"""" lcrash
340 PRINT """"xxnunnu leoyash
350 PRINT "wnnmnwwwnn - RETU
RN

360 PRINT LB UL LI L L L L : : RET
URN

370 PRINT """""xxuwnnnw .. RE
TURN

The method of closing an
"ajar" file, described 1in
Tips #28, doesn't always
work, but this one seems to
be reliable -

100 ON ERROR 500 :: OPEN #1:
"DSK1.TEST" INPUT #1:AS

PRINT AS :: STOP
500 ON ERROR 510 :: CLOSE #1
510 INPUT "CHECK DISK AND DR
IVE, PRESS ANY KEY" :DUMMY$S

24 PROGRAMBITEN 91-5

RETURN 100

This one 1is just for the
fun of it - 1t uses the
contents of computer mem-
ory to create designs -
100 DISPLAY AT(3,10)ERASE AL
L:"COLORPEEK": :TAB(7);"by J
im Peterson": :" Watch the

computer's memory": :"displ
ayed in color."
110 DISPLAY AT(12,1):"Choose

": :"(1l) plain colors": :"(2
) bars & checks": :"(3) patt
erns" :: ACCEPT AT(12,8)VALI
DATE("123")SIZE(1):Q :: CALL
CLEAR :: IF Q=1 THEN 170
120 DISPLAY AT(12,5):"wait,
please" :: IF Q=3 THEN 140
130 FOR CH=32 TO 143 :: CALL
CHAR (CH,RPTS("FO",8)):: NEX
T CH :: GOTO 160
140 RANDOMIZE :: FOR CH=32 T
O 88 :: FOR J=1 TO 4 :: X$=S

EGS("0018243C425A667E8199A5B
DC3DBE7FF" ,INT(16*RND+1) *2-1
,2):: BS=BS&XS :: CS=X$&CS
: NEXT J :: CALL CHAR(CH,BS&
Cs$)
150 CALL CHAR(CH+55,BS&CS)::
BS,C$="" :: NEXT CH
160 FOR SET=0 TO 14 :: CALL
COLOR (SET,SET+1,16-SET) :: NE
XT SET :: CALL SCREEN(2):: G
OTO 180 '
170 FOR SET=0 TO 14 :: CALL
COLOR (SET, SET+2,SET+2) : : NEX
T SET :: CALL SCREEN(16)
180 FOR J=-1 TO -2000 STEP -
1 :: CALL PEEK(J,A):: A=A-(A
<33)*(A+32):: A=A+ (A>143)*(A
/2):: R=R+1+(R=24)*24 :: CAL
L HCHAR(R,1,2,32)
190 C=C+1+(C=32)*32 :: CALL
VCHAR(1,C,A,24):: NEXT J
GOTO 100
Unlike most of the num-
ber games played against the
computer, vyou can win this
one -
100 CALL CLEAR :: CALL SCREE
N(1l6):: DISPLAY AT(3,8):"THE
*37' GAME" !by Jim Peterson
110 DISPLAY AT(5,1):" We wil
1 take turns picking":"a num
ber from 1 to 5, but":"not t
he number that was just":"pi
cked."”
120 DISPLAY AT(10,1):" The n
umbers we pick will be":"add
ed to the total count.™”
130 DISPLAY AT(13,1):" Whoev

er reaches 37 is the":"winne
r, but if you go over":"37 y
ou lose."
140 CALL SHOW(20,1,"Press an
v key to start")
150 CALL KEY(0,K,S):: IF S=0
THEN 150
160 DATA 4,11,17,24,30,37
170 DATA 262,330,392,523,523
180 DATA 1047,784,659,523,52
3
190 C,P=0 :: CALL CLEAR :: C
ALL MAGNIFY(2):: R=10 :: FOR
J=1 TO 5 :: CALL SPRITE(#J,
48+J,5,R,10):: R=R+30 :: NEX
T J
200 CALL SHOW(24,1,"(Y)ou or
(C)omputer first?"):: ACCEP
T AT(24,28)VALIDATE("YC")SIZ
E(1):08 :: DISPLAY AT(24,1):
210 IF QS$="C" THEN CALL SHOW
(22,8,"I pick 4"):: CALL COL
OR(#4,1):: P=4 :: C=4 :: CAL
L. SHOW(3,10,"COUNT=4")
220 CALL SHOW(20,8,"Pick you
r number") :: ACCEPT AT(20,26
) VALIDATE("12345"):N :: IF N
=P THEN 220
230 IF P>0 THEN CALL COLOR(#

P,5)

240 CALL COLOR(#N,1):: P=N
C=C+N :: CALL SHOW(3,10,"C

OUNT= "&STRS$(C)):: IF C=37 T

HEN 320 ELSE IF C>37 THEN 34
0

250 RESTORE 160

260 READ X :: IF C<X THEN B=
X-C ELSE IF X<37 THEN 260
270 CALL SHOW(22,8,"I'm thin

king..."):: FOR Y=1 TO 700
NEXT Y

280 IF B>5 AND B/2=INT(B/2)T

HEN B=B/2

290 IF B>5 OR B=P THEN B=1-(
P=1)

300 CALL SHOW(22,8,"I pick "
&STRS(B)):: CALL COLOR(#P,5)
:: CALL COLOR(#B,1):: P=B ::
C=C+B :: CALL SHOW(3,10,"CO

UNT= "&STRS(C))

310 IF C=37 THEN 340 ELSE IF
C>»37 THEN 320 ELSE 220

320 RESTORE 170 FOR J=1 T
O 5 :: READ F CALL SOUND(
100,F,5,F*1.03,5):: NEXT J :

CALL SHOW(12,8,"YOU WIN!")

330 CALL SHOW(15,8,"Play aga
in? (Y/N)"):: ACCEPT AT(15,2
6) VALIDATE("YN"):Q$:: IF Q%
="N" THEN STOP ELSE 190

340 RESTORE 180 :: FOR J=1 T

PROGRAMBITEN 91-5 25

O 5 :: READ F :: CALL SOUND(
300,30000,30,30000,30,F,30,-

4,5):: NEXT J :: CALL SHOW(1
2,8,"YOU LOSE!"):: GOTO 330
350 SUB SHOW(R,C,TS$):: FOR J
=1 TO 10 :: DISPLAY AT(R,C):
" " :: DISPLAY AT(R,C):TS
NEXT J :: SUBEND

A couple more peculiari-
ties of the computer -
100 DISPLAY AT(3,8)ERASE ALL
:"POS PUZZLE #1": :" £
rom Tigercub"
110 DISPLAY AT(9,1):"Why doe
s the computer say":"that X=
1 if you answer the":"prompt
with the Enter key":" (null-
string) 2"
120 DISPLAY AT(14,1):"110 IN

BEUT Ms"
130 DISPLAY AT(15,1):"120 X=
POS(""TESTING"" ,MS$,1)::":"PR

INT X :: GOTO 100"

140 !POS PUZZLE #1 - why doe
s the computer say that X=1
if you answer the prompt wit
h Enter (null-string) ?

- Jim Peterson
150 INPUT MS$S

160 X=POS("TESTING" ,MS$,1)::

PRINT X :: GOTO 140

And -
100 DISPLAY AT(3,8)ERASE ALL
:"POS PUZZLE #2": :" f

rom Tigercub"

110 DISPLAY AT(7,1) :"Why doe
s the computer say":"that th
e first position of":"null-s
tring is at whatever":"posit
ion it is told to start":"se
arch at?"

120 DISPLAY AT(13,1):"100 MS$
130 DISPLAY AT(14,1):"110 DI
SPLAY AT(20,1):""POS?"" :: A
CCEPT AT(20,6):P"

140 DISPLAY AT(16,1):"120 X=

POS(""TESTING"" ,MS$,P):: DISP
LAY AT(22,1):""X="";X :: GOT
O 110"

150 Mg=""

160 DISPLAY AT(21,1) :"POS?"
ACCEPT AT(21,6):P

170 X=POS("TESTING",MS$,P)::

DISPLAY AT(23,1):"X=";X :: G

OTO 160

Here is an improvement to
the PRINTSPEAKER in Tips #40
- in 1lines 130 and 160,

change the CHRS(1)&"1" to
CHRS$(3)&"255" . This will
avoid problems if the pro-
gram being converted opens
FILE #1.

Irwin Hott informs me that
assembly routines which have
been imbedded into XBasic
programs, using ALSAVE or
SYSTEX, can be saved to
cassette and reloaded. This
could be vwvery useful for
those who have a stand-alone
or "matchbox" 32k.

And, a mini-game for you
to have fun with or improve
on -—

1! 2-LINE GAME
by Jim Peterson

- use S&D keys to paint the
white line on the highway
2 !if it is too easy, change
the 6 in AS=RPTS(CHRS$(143),6
) to 5 and the 5 in C>T+5 to
4
100 CALL CLEAR :: AS=RPTS(CH
R$(143),6):: CALL COLOR(14,2
,2,2,16,16) :: CALL SCREEN(4)
:: T=11 :: C=14 :: CALL HCHA
R(22,C+2,42):: RANDOMIZE

110 T=T+INT(3*RND-1)+(T=21)-
(T=1):: PRINT TAB(T);AS :: C
ALL KEY(3,K,S):: C=C+(K=83)-
(K=68):: CALL HCHAR(22,C+2,4
2):: IF C<KT OR C>T+5 THEN ST
OP ELSE 110

And finally, one of the

best examples of compact
programming I have ever
seen -

1 !JOHN WITTE'S 3-LINE VERSI
ON OF JOHN WILLFORTH'S WAVE
POWER - PUBLISHED IN GREATER
OMAHA UG NEWSLETTER
100 CALL CLEAR :: AS(1)="ABC
DEFGFEDCBA" FOR I=1 TO 7
CALL CHAR(72-I,RPTS("0",2
*T-2)&"FFFF",47,"30303EFF7F3
E1E04"):: AS(I+1)=SEGS(AS(I)
,2,12)&SEGS(AS(T),2,1):: NEX
T I
110 CALL SPRITE(#5,47,2,180,
180,-23,0,#6,47,2,80,100,-23
,0):: CALL MAGNIFY(2)
120 FOR I=1 TO 12 :: PRINT A
S(I+(I>7)*2*(I-7))&AS(1+I+(I
>6)*2*% (I-6)):: NEXT I :: GOT
0 120
Memory full Jim Petersonl

26 PROGRAMBITEN 91-5

USER-TREFFEN IN BERLIN
13—-15 SEPT 1991

by Alexander Hulpke, Germany

For those of you who - be it the
large distance, be it other duties -
were not able to come to the annual
meeting at Berlin this September,
I'll try to sum up the highlights
and give some report about it. It is
of course my personal impressions,
and I hope I didn't miss anything
and anybody, otherwise sorry! Though
the excellent organization of the
meeting (but I should note, that we
are used to it) by the Berlin user
group, especially Franz Neudert and
Henry Hillsberg, who also provided
some "tourist program" for those who
were interested, the audience was
significant small compared to the
last year, 360 to 100 approximately,
if I got the figures right. I assume
this is not just falling interest,
but also consequence of the very
distant and noncentral location of
Berlin (which also will be a major
disadvantage for it as capital).
Nevertheless some guys even came
from Belgium and the Netherlands,
but for example I did not see anyone
from Austria, who came the last
years. I won't touch audience and
non TI program any more, bhut de-
scribe the various new or modified
programs shown:

Starting with the hardware, first I
should note, that a lot of people
had a modified p-Box; even though it
housed the usual cards, you could
not recognize it at a TI system at
the first glance, also concerning
the large varieties of disk drives;
from 5 1/4" 90KB up to 3.5" 1.44MB.
Consequently also a card with
voltage regulators was shown, that
allows You to connect more disk
drives to the p-Box's internal power
supply.

Most systems had an 80 column up-

grade, and there were also about 5
Geneve Systems, unfortunately none
with the 64k video upgrade.

Not astonishing the new hardware
shown had connection to the 9938:

First there was an small modifica-
tion to the 80 column card to allow
the use of a standard Color Look Up
Table (CLUT) as used on VGA cards.
This allows the 16 or 256 colors to
be selected from about 256000 or so,
beating the 9958 by length. The
modification, which was invented and
shown by Sven Dyroff, costs about
30DM in parts and requires the
connection of the CLUT to the color
bus and the installment of an 8 Byte
port for programing the CLUT. As
there was no special 80 column card
hardware, it should be possible
easily to adapt it also to the DIJIT
card or the Geneve. The only problem
especially on the Geneve) will be to
find an 8 Byte area still unused,
that could be decoded for this de-
vice. Also some power-up software
has to be included to reset the
standard palette. even though the
circuit was build on a breadboard,
it worked flawlessly and the video
signal was very stable. If I knew a
free memory area to decode, this
would be the next addition to my
Geneve and to YAPP, if anyone knows,
please let me know!

The other new hardware was shown by
Klaus Wendel and the TI Club Leipzig
and consisted of a video digitizer,
connected to the 9938. They had
built their own video card, that
allowed parallel use of the 9918 or
9938 by replacing the video inter-
rupt by an external one. to this
card a RGB splitter was connected,
that alsoc was connected to a video
camera to get a signal. The digi-
tizing speed was virtually real
time, and the results astonishing.
They provided also the possibility
to do a digitized image of yourself.
Soon also some people started using
YAPP to modify pictures, thus some
people eagerly kept the disk with
their digitized image for themselves
to avoid such tampering...

The same guys also showed modified
routines for disk access, that
allowed by direct controller

PROGRAMBITEN 91-5 27

programming and avoiding the TI file
system overhead blazing speed,
comparable with a good hard disk,
when using it on a TI with disk
drive. Also they told, but not de-
monstrated, the use of an AT-Bus
hard disk on the TI: A hard disk
with this kind of interface could be
connected with very few work (about
20DM cost in parts) to the TI, just
by providing a port to write to/read
from. The only problem would be to
write a new DSR, which they had no
time for. This kind of hard disk may
be difficult to implement on the
Geneve, since it does not use the
DSR's, but surely would be an alter-
native for the TI, since an AT-Bus
hard disk is priced about the same
as one with a ST506 port.

On the other side, there was some
software newly demonstrated or now
shown in finished versions:

Henrik Wedekind demonstrated a
finished version of his platine CAD
program, that surprises especially
by it's very user-friendly handling,
similar to the Macintosh computer by
Apple. The program provides nearly
all standard paint functions and
works neatly on the TI with 80
column device (I did not check it on
the Geneve).

Peter Muys from Belgium showed his
program "CRASH" which allows to do
chart analysis on the Geneve. The
program is written completely in
Assembler and runs from MDOS mode.
I'm not a speciallist concerning
shares, but I was told the built in
functions are equal or even beat PC
programs, that cost several kilo-
marks.

Also shown (sorry, but my sieve-like
brain forgot the name of the author)
was a XBasic compiler for the TI. At
the moment, it compiles everything
except SUB's, DEF's and arrays, the
only disadvantage is compiling time,
which is still counted in hours,
since the program is written in
basic and not yet able to compile
itself, otherwise really neat.

Asgard Software, which was repre-
sented by Jim Fetzner, sold their
software programs. Unfortunately a
large packet with software did not

arrive in time, thus quite a bit had
to be ordered to be send by mail.
New were TI/Geneve adaptions of some
Infocom Games never released for the
TI. I've seen those adaptions yet
some time ago, but Asgard has pur-
chased not just the rights to
distribute it, but also the original
packages, which means you get all
those great goodies with your soft-
ware. I guess everyone knows these
games, and does not need any ex-
planation, so just a short rating:
all the following software is from
Infocom; buy, enjoy: SUSPECT,
HOLLYWOOD HIJINX, STATIONFALL,
LEATHER GODESSES OF PHOBOS, LURKING
HORROR PLUNDERED HEARTS and possibly
many more!

During the last year, I had not so
much time, so I just had to show the
newest version of YAPP, with the in-
cluded hardcopy and the ability to
load instances. Again I found that
some people did not know about even
elementary options of the program,
since they did not read the DOC's
completely (additionally, but not in
the DOC's: enter just the number,
when doing a disk's directory). Also
the logic functions, that allow for
example the mixing of pictures and
the use of colored slides are often
underestimated.

Winfried Winkler showed his new
modified XBasic. This program is
not, as many other "new XBasics",
just filled with additiomnal
routines, be it for graphics or
other purposes, but also extensively
rewritten. Especially part of the
code has been removed from slow GROM
and the slowness of interpretation
in GPL to fast Assembler. This leads
to the only drawback: The module
consists of not just 2 ROM Banks at
»6000 like the standard XBasic, but
3, thus just running only on the
Mechatronic GRAM card, but not on
the Geneve or Gram-Kracker or other
simulators with just two banks. It
is the first module I know of, that
makes use of the third bank.

The last program to note was again
shown by me, though it was written
by Martin Trabi of Austria, but none
of the Austrian user groups came to
the meeting: A 80 column version of
the UCSD p-System for TI and Geneve.

28 PROGRAMBITEN 91-5

This caused quite some interest in
those users tired of slowness and
disadvantages of Basic. There also
is a so-called Turbo-Pascal, but
this contains just a small subset of
the Jensen/Wirth standard, excluding
all higher data structures as
pointers and records, also the
syntax is quite different to the
standard.

Those, who have worked with the p-
system Pascal know, that it resides
on a p-box card, which contains some
ROMs and GROMs. Martin has done a
terrific job in disassembling and
rewriting these routines, modifying
them to use some module simulator
like Gram-Kracker or the Geneve.
Doing this work, also some errors
were corrected, and a yet non-
supported command included. This
would get you an (perhaps a bit
faster) equivalent of the p-code
card, but he did not stop with this:
also included is access to the 9938:
This will let you use the system in
TRUE 80 columns, which is a more
than major improvement. The 64k ex-
tension RAM of the card can be used
(if installed) as an RAMdisk, that
is large enough to contain the
compiler and some swapping space.
Since the compiler does a large
amount of swapping itself, this
greatly decreases compiling time and
thus turnaround times.

Also modified and improved was the
SYSTEM.LIBRARY, now not only includ-
ing rewritten support routines, also
including a new one for the mouse,
but also an equivalent of the well
known TURTLEGRAPHICS package, for
example available on the Apple.

This allows for example to compile
programs, original written for the
Apple on the TI/Geneve with just
minor modification (for example
because the 9938 allows more colors
and better resolution than the
Apple).

I must admit that this is to my eyes
the BEST program I've seen, since I
got my Geneve (before this time I
had a p-code card), since the reason
for me to upgrade was to run Pascal
in 80 column mode.

For those of you, who never used the
p-system, you can compare the possi-

bilities to those of Turbo-Pascal
4.0 or 5.0, just some units access
for graphics etc is done different,
since e.g. the PC has no sprites.
UCSD Pascal does not include the
object-oriented stuff of newer
Turbo-Pascal (But I don't think this
is a major disadvantage, since this
results more or less just in
different coding conventions) and
functions as parameters, but (and
not yet included in Turbo-Pascal)
the ability to run procedures
parallel, including so called
"semaphores" for synchronization.

This excellent program is not yet
published, but as I heared, Asgard
Software is trying to publish it,
since they already obtained the
rights for the p-code card and the
accompanying programs, hopefully the
release will be soon!

That's all for this time, next year
the meeting will be held again in
Wiesbaden, hopefully attracting
again more people. @

KATALOG AV DISK
(frdn PB 85-1.17)
av Jan Alexandersson

100 CALL CLEAR

110 T$="DIS/FIXDIS/VARINT/FI
XINT/VARPROGRAM"

120 OPEN #1:"DSK1.",INPUT ,R
ELATIVE, INTERNAL

130 INPUT #1:A$,J,J,K

140 PRINT A$;" LED=";STR§(K
):" ANV=";STRS§(J-K):"filnam
n sekt typ p":

150 FOR I=1 TO 127

160 INPUT #1:A$,A,J,K

170 IF LEN(A$)=0 THEN 230
180 PRINT AS;TAB(14-LEN(STR$
(J)));J;TAB(17) ; SEGS (TS, ABS (
B)*7-6,7) ;SEGS(" "&STRS(K),1
-(K>99) ,-3*(ABS(A) <>5)) ; TAB(
28) ;CHRS (32-10*(A<0))

190 CALL KEY(3,T,S)

200 IF S=0 THEN 220

210 GOSUB 260

220 NEXT I

230 CLOSE #1

240 GOSUB 260

250 END

260 CALL KEY(3,T,S)

270 IF S<1 THEN 260

280 RETURN =

PROGRAMBITEN 91-5 29

peuinjes aq ||Im S3UDq "§N-UOU WOy SYIeY> |Duosied
*p4D2 j1pau3 10 Japio Asuow |pucyoussjul Jo [Dysod DIA And '°§'n episingD

|iIDW JID DIA

Asamap uBiaio} sayjo sanssi z| 1oy (spuny 's'n) 00°ZrS

_ 0898 X1 ’Po) punoy ‘trtl xog 'Od ‘wnipusdO¥dIW ot oW - _

(ss0ps0 pun> §jpes> uo pesnbe)

.

£5 %1 JOPIO PIDD PO WnwIUW

aunjoulig

"ON pi0)

aynqg “dxg

(euo yo2yd) [Z@ [@@ AW 1119 10 "spuny

‘g’ Ut 1apio Asuow 10 328Yd> D Ul
wo | ‘wnjpusdOYDIW JO senss| Z| ixeu oy} ew pueg

¢ Buisopua

*RID UE JO PUD 341 10U 4]
-nuysp 51 Aresioatuur pusn s Suissand
] pom Aepliaad 1) Ypje6ll B 350
INq pr661.L [PuIBLI0 Aw aasy qius | “s3uig
Jo peuft ® op wed pue suAndwod awoy
J1qe]iRAE 153q) Jo 00 |[1s $1 sndwod
.paueydio,, inQ “LL p 10§ ysnf swesFosd
mm mu_u.r..u oﬂ M0 .Ba:.s 2Ry | _._.
g Ajeanyt d p
Jan0 Burureiuod s300q uo‘__._uuﬁwu_u_aém
ipeonpoud Buiaq |[us st
UrMpIRY pue uemyos maN Suans Suiod
1118 S1 LL 241 Te1) 395 01 UBD A USYM SUON
-uaAuod o} o8 o si1asn | Aue a8minodoua
Aj3uoms | 1nq *spuawyy [] 2wn-Suop usia
-a1 01 51 03 | BOSE UKEW Y], LI-91 ‘924
sdnouB 1asn (enwojie)) A3|jeA RUOWIOY
pur Aluno?) 33uri) Y1 Aq 1rA s1y) parsoy
16. 13153 01 Buod o) puemao) B
-100] W,] "SPULY [NJISpUom LOS dpew
pur ppom 2yl moySnouyp sdnosd suasn
01 |9ARN) 01 J[QE UIIQ ARy | ‘|L Aisnn
Aw ynm siedk ual Aw noySnoayy
‘pHOM LAYt i yonol Ui 3w 1day sey
1Ry} pue "wnIpuadOUDIA UM UWn|od A
-(iuow Aw pauress | t8él Jo Axenuer uj
~J3wng 39eq) uo am siAndwod pue
1280 Yool Y Apurey utede 20 cREI
ur Aqeq B pey puE — 3J[Iyme Joj plaowm
1andwod umop-pue-dn ay1 pasoudi | en
-Xa,, se awodun Aw pue ‘Apwe) ayi suod
-dns oym pueqsny ® Ay | 35NEIIY A3on)
sem | “Ajeueuy 31F8nns © annb pry
ssauIsng JAndwod 2Woy) Ul asam oym

a1doad Auepy ‘siaindwod jo spueiq jese
-A2S Yna Suoje — paseaddesip sauize3ew
2y} jo Auew *sp] 210w Surdnpoud paddors
SIUIDUINIISU| SEXI], I AWES Y} IN0qY
‘sauize
-Bew 13y10 [RI2A3S 10) N0IM OS[E | “SAUIZ
-e3ew JIYL Jo Y Ul SIdIUE AjYpuow
MN01m pue sy00g jAInduio) yim sx00q
XI5 Jua | Kduow yew A[jeas pnod
| 213ym ssauisng B ol pawmy Aqqoy Aw
pue jaindwo)) 10) Junum pauess | Zg6l U]
‘o awed Kay) se uandwod awoy jo £131
-ea B yna ing Sunwesdosd DSy yim
pakers | — swraSord Sunum sem | se 1
-indwod 310w pue asow pappe A|jenpetd
1 ‘Apuaioyye asow weiSoud 0) moy pue
SAUNINOIGNS 35N 0} MOL PUR SYOLII MI] T
Powsma] aary | uEak Ay yAnauy] Cpawaas

It poziuedioun moy padnou pue Skum

| swres3osd A1 2y Jo uo 18 paNoo] |
aN3 061
0ZT OLOD 08T
S LX3EN 0LT
({0S)d’'ez+BaS+(8)
¥ {ZE)Y' (PZ)U)YYHOA TTYD 091
((0S)4'€Z+Ba5+(8)
¥’ (2Ze)y’ (pZ)H)YYHOH TTIYD 0ST
(z'o
ST+(000T)¥'05S}ANNOS TTVD 0BT
(
(9T)¥'{9T) ¥ S)¥0TOD TIVD 0€T
9T OL 1=5 ¥0d 021
(T+aN¥.X)INI=(X)¥ 43Q 011
93TIWYS WY 001

“wesdord 2yl Ne21q 01 H-UID4 38N I2A0
wesdoud 21 sums o] Aul| pue ‘pasn e
125 10102 243 ||& 0s doof 3y) Spu (L] aur]
*u22195 3Y) uo sa1ydesd awos 2oe|d 01 Suon
-11ada1 pue q Yo
'SMOJ WOPURI 3S00YD (9] Pue (G| ..u:.q
-2u01 B J0j Aduanbal) wopurl B SIS00YD
OFl auI] 19§ J0[0D Y1 10 KI0[0D WOP
-URJ S3500YI ()] Ul JIQWINU WOPURI
® Ajjead s1 1 *suzadde)y ey wesBosd oyp
Ut 2JoYmAI2AD MON "X 01 | WaK| JIquinu
WOpUR1 ® SB Q]| AUl Ut pauyap st (X)Y
1831 “uonensuowap oydesd v ul siaq
-wnu wopues saensnj weidosd spdwes
Suimojjoy ay] ‘sezzinb |euoneanpa 10j
s1aquinu wopues Juisooyd) jdwexa su)
— 2INJE3] I2QUINU WOPURI Y1 S1 |1) Ul
PASN 2ABY | SUOLIDUNY UIRW D41 JO 3UQ

anNdg 08T

01T OLOD OLT

S LX3N 09T

(2’s’0S-)aNnos TTYD 05T

0T 43ls 00V OL 00Z=S W04 0FPT
S IX3N 0ET

(Z's’05-)ANNOS TTYD 0ZT

1- d3LS 00Z OL 00%=S HO4 0TI
GETAWYS W3Y 001

‘doo) ® u Suikiea punos jo sjdwexa

UR S1 A1aY s1aqunu ISIOU,, Y Yitm S21D
-uanbayy fuinquios Anuayy “doo| LXAN
-404 ¢ ut 2wnjoa ays uiksea 1 ospe ued
nop ysiuy 01 uonenp snoiaaxd ay oy

(8 23%g woa) panugiuo))

—VN3ON

6 39%d 1661 Atenuef wnipuad YN

(6 38eg 395)
Suniem umny 1211 'pIYIE 81) B BOOS SE
PIN29%2 §1 UINLIES PUNOS) OF UOITRIND
241 loy Jaqunu aapEdau e 2s() ‘sv1ousnb
-3y iy SmAres pue sdoo| LYHN-HOA
Suisn s1 Suin Aofus Lew nok Buip 2uQ
*§139J9 JO SUIOS [[B — 001 *| L, 241 U0 Spuncs
40 AjaLeA B 2B O JQE UIIQ IARY SIDW
-wie1Sou 2I0U S| U0 EW 0) SISqUINU
JO SI|QE PUR TIUSALNEIS [RIIAIS IE) PINOM
" (as0f D §€ yons) s1andwwiod JIo
a1 Jo awos uj “psoyd & Aejd Ajjemoe ues
NOK JUSAEIS U0 LIA, "SI pue SPUnos
S_Sm__.__.ﬁ_...oﬂm:u_:caﬁhEuou:D

ON= 0TE

0vZ OLOD -00E

S LXAN 062
(1'1'S)¥0T00 TIND 08T
(T'L’S)¥0T0D TIND 0LZ
PT OL 6=5 ¥04 092

0vZ N3HL T>8 4I 0ST

(S'AM°0)Zad TIYO 0%Z

«"AFM ANV SS53dd. INI¥d OEE
(9E€T"ET’0T)¥VHOH TI¥D 0TT

(BZT'ZT 'TT)¥VHOH TIND 01T

(0ZT'TT ZT)IUVHOH TTYD 00T
(ZTT'OT'ET)UVHOH TTVO 061
(Y0T'6'PT)UVYHOH TIVD 0BT
(96’8 'ST)YVYHOH TIND 0OLI

S LX3N 091

(1'1'S)¥0T0D TIVD 0ST
($0°9Z+84S)¥VYHD TTVD 09T

. ?T OL 6=5 HOd O0fT
«80¥0Z0TBOY0Z0T0.=5D 0Z1
¥va1o TIHO 011

PATdHVYS WAy 001

‘urede 3jqisia

-uy 11 Suryew U3 “J0j03 135 JANIRIBYD AP
BuiSueyd Aq 2|qISIA SI3NIRIBYD Y] HEW
062-092 Saul] *Aay e ssaud nok uaym w2
-Jedsuey) 0) pOBUBYD UIIQ ARY 5135 SO
JO SI0J0D L) SMEIIQ WA WIS 1,u0p nok
INq U213 Y o s1NOeIRYd a1 2081 07T
-0L1 SauIT “p| 01 § WO S13S INIRIEYD AR
JO YOB2 Ul U0 *SIIBIRYD UL PAULIP SI 3ul|
[euoSeIp v "BIpI SUO SI AU “IUIWIAOW
Jo uoisn|p a dn paads o1 A1 01 SEIPL
snotiea ilm dn swod pinom siawuresdosd
‘1L Y1 uo mojs Ajpane|al asam YYHIA
11VD PU® ¥VHOH T1vD pue Bu
-ud ay 2duls soiydesd Fuiaow pauem

sn jo Auew *soured 1o inq ‘|ynneaq Am
uaos [1 o uo sumod Areuonelg

: anNa 0zt

01Z OLOD 01T

¥ IXaN 002

T+0=D 061

(T-¥s2Z

.wm D+9T “H-£T)¥YVHOA TTYD 08T

: E (T-¥aZ

‘96 'D-LT "M-ET)¥YHOA TIVD OLT

(T-2+2

‘96°0=LT "M+TT)VVHOH TTVD 091

(T-0x2

'96'D-LT "¥-ET)YVHOH TIYD 0ST

Z¢T OL T=d ¥od 0PI

i =0 0¢ET

nw._" 91 m'mo.uou TIVO 0Z1

" ¥¥ETO TIVD 011

EFTIWYS HWEY 001

“u3AUIS AY) JO JNUD A 18 Jurums J0jod

Jo $}o0|q Buisn 123)43 ajduuis © 51 2U3H ‘op

pInod dwoo e sEuiy [eot uou

pue sajydeid sy noqe panaxa Eu; s13sn
aandisod swoy Ajea jo jof € yuup |

and 009

NUNLIY 0E£S

L IXaN 0ZS

(((E'L'SH) $0d

S)OSY ' T-£+D '¥)YYHOH TTVD 01§

—m-:zmq OL T=r ¥0od 00S

W3y o6v

009 OLOD 002

005 nS0O 06T

9=2 081

ST=¥ 0LT

» HIHIONY SI 3¥EH.=$H 09T

' 005 €nS09 0ST

?=2 0?1

L=¥ 0tT

«"HOYSSAW ¥ SI SIHL.=$H 0ZT

HYATO TIYD OTT

ZATAWYS WAY 00T

‘006 AUl Ul SUMS

supnosqns a3 ‘odures sup uj "sunnoIqns

o J1e2 usy ‘g Suins ay ur aFessaw p

ng "ues o] a8essaw Ay Juem nok aragm

2 uwnjod Ay pue Y mos i Aj1dads ‘aun

-NoIqns 2Y) (82 NOA 240j3g °dunnoigns e
Ul ¥VHOH TTVD 950 a st Aem saqiouy

aNa 061

08T OLOD 08T

(8)NEENDS TTYD 0LT

O IXEN 09T

£ INIHNd 0ST

0T OL T=r ¥0d 0FT

t 3 3 ! :L,OTTHH. INI¥d 0€ET

(Z)NE3¥OS TTYO 0Z1

yyda1o TIVD 01T

TATdWYS W3 00T

‘ueka> 1 yorq UALS Y1 AFueYd VI

“yor|q Ut s13U3] A1 WwLd *3IeIq 01 URUIS

21 28ueyd 01 51 Aem auQ ‘st ysiidwosoe

01 SAem [RIGATS 2uE 313y], =uo._$o..._n_.=

Bunpjosas o I RUL

LNRid 01 lues pjnom am uayo u.:.o

(ZEHT'ZE'T'TAVHIA TIVD

Jo

(ZEFT'TE'TDEVHOH TIVO

3q pjnom

133132 WAYIP B "YVYITD TTVD Jo pras

-ul 5B yons “‘sfuiy uny spi| maj B pawses|

e o Aj9auy voneuuojul paseys ajdoad

pue pouugj uam sdnosd ssasn os ‘skep
AJJE3 U1 Ul S19UMO] M3J uam Y|

‘dnosny '

SI13S() [EUOTIBWIAIU] 3 12W PUR 13,66
YIM POYIOM PUE (JWEU I[ppIw jenioe Aur)
L puafay,, sweu ap uo papiap | sand
-wod Aw ynm Juiked Kouow axew Kjem
-Je pInod | 1o punoj pue ulzeBep 13,66
o o) swesBoud ma) & paniwgns | S
ay yInoup e , Bunp asow auo isal,,
Sutop dn pua pue wesBosd ® uo Suppom
193 ue> 1Ippe JAMdwod ' Moy pawted)
1 '1861 ul “(paystjand pue) Ajjedtpous
-ad parepdn uaaq sey weiBoud 1eyl Ig6l
o Sunum g6l yum ySwprw je wydu
NNy 2q o) paudisap ,‘suks Sue] pinv.
sem [L 3y uo 2oum | wesSoad 1suy 3y
“UAPIP Y 35N Jo 5% Jof ¥daouod
JNPOL PUELLILLOS) PIY1] OS[B I "d1snw
pue soiydess 10[0d 31 INOQE PANIXD J1Im
PUE UOIS1A9]3] IN0 01 dn 11 pa%ooy ap ‘IOl
-UOW A PIPNEIUL YDIYm 183K S U1 JD1IEd
Jo 13430 QOIS A VBt s3] Apydips sem
1 05 ‘p9s Moge 10) |1 154y no 1ynogq
1 pue pueqsny Kjy ‘PaAIada1 aam Suny
[EUdlEW JYI0 Aue UEBL) 2I0W $IAI| IO
pofueya Y13 sEUNSLIYY) 1By PIES U0 IABY
1 ‘0861 Jo Seunsuyy 10} p/66LL 14y N0
108 9m 2ouls s1eaK U AT10EXD Uaq SBY 1]
VYNADAN 44

8ununod pue sieaA Bunsaisul us|

uwinNjod AINSI3AIUUD UY

EEITH

1661 AsenuefunipuadQUIIN 8 3%ed

PROGRAMBITEN 91-5

o)
m

